
A Diagnostic Utility For Analyzing Periods Of Degraded Job Performance

Joshi Fullop and Robert Sisneros

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Urbana, IL USA

Email: {fullop, sisneros}@illinois.edu

Abstract—In this work we present a framework for identify-
ing possible causes for observed differences in job performance
from one run to another. Our approach is to contrast periods
of time through the profiling of system log messages. On a
large scale system there are generally multiple, independently
reporting subsystems, each capable of producing mountainous
streams of events. The ability to sift through these logs
and pinpoint events provides a direct benefit in managing
HPC resources. This is particularly obvious when applied to
diagnosing, understanding, and preventing system conditions
that lead to overall performance degradation. To this end, we
have developed a utility with real-time access to the full history
of Blue Waters data where event sets from two jobs can be
compared side by side. Furthermore, results are normalized
and arranged to focus on those events with greatest statistical
divergence, thus separating the chaff from the wheat.

Keywords-System Logs; Data Filtering

I. INTRODUCTION

In this work we present a framework for identifying

possible causes for observed differences in job performance

from one run to another. Our approach is to characterize

and contrast periods of time through the profiling of system

log messages. On a large scale system there are generally

multiple, independently reporting subsystems, each capable

of producing mountainous streams of events. Log-worthy

events are anything from those associated with catastrophic

system failures down to the multitudinous and mundane

machine minutiae. The ability to sift through these logs and

pinpoint events provides a direct benefit in managing HPC

resources. This is particularly obvious when applied to diag-

nosing, understanding, and preventing system conditions that

lead to overall performance degradation. Such conditions are

the specific target of this work. In fact, the motivation of the

development efforts were undertaken to address the almost

constant question from users as to why one of their jobs

performed better than another.

To begin this presentation we describe the Blue Waters

logging configuration and enumerate the various subsys-

tems whose logs are consumed. These include but are not

limited to the mainframe via Crays Lightweight Log Man-

ager (LLM), the Bright Cluster managed External Services

Management Servers (ESMS), three Sonexion-based Lustre

file systems, a HPSS near line storage system, Moab and

Torque scheduling services and various network switching

Figure 1: Runtime variations across multiple job runs.

equipment. Peak log volumes we have experienced so far

were in excess of 200GB in a single day. We also present

the use of our Hierarchical Event Log Organizer (HELO) to

classify and ingest events into a database at sustained rates

exceeding 20,000 log messages per second. The benefits of

using a database to organize this information are numerous,

but the one most critical, when combined with integer-based

tagging of log messages, is indexed searching. To this end,

we have developed a utility with real-time access to the

full history of Blue Waters data. Specifically, we compare

system-wide events during two jobs, one with normal perfor-

mance and another with marginalized performance. And we

describe the different forms of contrast used in comparing

the fingerprints of the periods in question. Furthermore,

results are normalized and arranged to focus on those events

with greatest statistical divergence, thus separating the chaff

from the wheat.

II. BACKGROUND

The Blue Waters supercomputer generates many multiple

gigabytes of log data per day. Sifting through this amount

of data from various perspectives with different agendas

requires almost as many mining techniques as there are

questions posed upon it. Without endeavoring to answer

all the possible questions, we will constrain our paper to

discussing one of the most commonly posed questions by the

user community: “Why did my job run fast during this time

and not at another?”. This question can be more generically

posed in terms of log assessment as “What events occurred

during one time period versus another?”.

One of the overriding general premises is that log mes-

sages are generated when something goes wrong, and is

silent when things are functioning properly. Or in some

Figure 2: A comparison of the outcomes resulting from multiple runs of the same job.

cases, the frequency of regularly occurring log messages that

indicate minor issues increases. Of course, there are counter

cases to both of these, but those are considered far more rare

instances. None the less, we provide a method of identifying

them as well.

Another difficulty in analyzing log data on a system

with the complexity of BlueWaters is defining a normal by

which any given period can be compared. This is also very

true of metric data, but is a topic for another discussion.

Using “standardized” jobs with exact workload on the same

number of nodes gives us at least the beginnings of a basis

for comparison. Ideally, the same placement pattern would

be beneficial, but that is not always practical.

These principals were the ones utilized in a study per-

formed jointly by members of NCSA and Cray in attempt to

discover cause and correlation between various measurable

factors and job trial performance, as is evident in Figure 1.

This consistency analysis was unable to divine a singular

factor with a consistently high correlation value across job

types and periods of execution. However, that is the nature

of extremely complex systems. One theme that persisted was

that performance was certainly impacted by what else was

occurring on the system at the times in question. Initially,

that drove the group to expand its consideration into factors

like: the number of other jobs started or ended during each

job in question, the number of nodes included in summation

of those job starts and ends, the number of other nodes in

use during that time period, the number of critical events

occurring, etc. Figure 2contains this information for one

such set of runs. Eventually, the broader question of how

do the log events compare between two observed periods of

performance came to the forefront. This was the spark that

initiated the following work.

III. SYSTEM LOGS

Before we can describe our methods, we first need to de-

scribe the scope and scale of our data and the infrastructure

used to ingest it.

A. Infrastructure

By method we separate each source to communicate to

NCSA’s Integrated Systems Console (ISC) over its own

port. Syslog-NG is used to receive, map and route these

feeds to the appropriate parsers, handlers and archives.

One significant issue is that the various log sources are

facilitated by as many versions of remote logging software.

These include a mix of syslog, rsyslog and Syslog-NG at

different version levels. This restricted the flexibility when

it came to ordering the string templates for handing over to

processing tools like the Hierarchical Event Log Organizer

(HELO) [1]. Using Syslog-NG on the reception end allowed

the greatest flexibility and we were able to find a least-

common (a.k.a. most rigid) log header/message template that

all the others could map to and expand upon. Syslog-NG

also allows us to use it as a common transmission layer

for all other typed of non-syslog data. This includes things

like application logs, performance metrics, quality of service

assessments, etc. Syslog-NG can handle these by using the

flags(no-parse) option in the source definition.

Data destinations are usually forked at the Syslog-NG

point into the handler and into the archive. It is easier to

write twice than to traverse the entire data set later and

determine what to write at that point. Archiving at reception

also provides a fail-safe against data loss if something were

to go wrong during ingestion processing.

A round-robin, bulk loading technique is used to move

data into the database for log streams that have the potential

for very high burst rates. (i.e. storms). This helps insulate the

database against record injection overload. This is a common

mitigation technique as indexing in bulk is far more efficient

that indexing on each record inserted [2]. High rates of

record inserting can overload a database engine and cause

it to cease other critical functions.

B. Sources

A key feature of this method is the consideration of log

messages across all of the reporting subsystems. Since there

are a number of shared resources in a supercomputer, each

able to become distressed independently, this ability provides

a substantial benefit in perspective. The following is a list

of some of these sources.

• Cray’s Lightweight Log Manager (LLM): This source

aggregates various system logs related to the main-

frame which includes console logs from the compute

and service nodes, systems logs from the supporting

infrastructure machines like the System Management

Workstation (SMW). Some of the subsystems included

are ALPS logs, erd, xtconsumer, balanced injection, and

many more.

• Bright Managed External Service Maintenance System

(ESMS): This set of machine contain the login nodes,

import/export (ie) nodes as well as the HPSS system

nodes. Each has a separate role and the Bright Cluster

Manager coordinates the centralized logging of all

nodes under its domain. Fortunately, this provides a

singular point from which to forward logs to the ISC.

• Sonexion Filesystems: The three filesystems supporting

BlueWaters each have their own log feeds. The /home

and /projects filesystems each consist of 2PiB across

144 OSTs, while the /scratch filesystem consists of

20PiB across 1440 OSTs. Logs are aggregated and

forwarded to the ISC from each filesystem.

• Scheduler System: Torque and Moab each generate

various logs and those are separately transferred by

Syslog-NG running in parallel to rsyslog on the sched-

uler host, for the express purpose of application and

accounting log transmission. This is required as at

implementation time, the installed rsyslog service was

strictly managed by LLM and unable to be expanded

to accommodate these logs.

• Networking Devices: Various network switching de-

vices with the ability to log events are also pointed

toward the ISC machine to provide yet another view-

point of what may be occurring on the system.

• Miscellaneous: Just about anything else that can gener-

ate log messages and can be configured to log remotely

gets collected by the ISC.

C. Classification

At NCSA we use the in-house developed HELO system to

identify and classify log messages in real time. The HELO

system has been presented before, but a short recap of what

it does for us is prudent since it is an enabling technology.

In short, HELO is a learning system that processes log

messages and identifies each message when possible and

tags it with an integer identifier (TemplateID). When it

is unable to match the log message to a currently known

template, it analyses the current library of templates to see

if there is another existing template that could be made

slightly more general to include the current log message. If

the generalization meets certain bounds and criteria, the tem-

plate is modified and the current log message is tagged and

processing continues. However, if the current log message

is significantly different than any of the existing templates,

it becomes a new template and the current message gets

tagged with the new TemplateID and processing continues.

HELO was originally built to be run in parallel across

many machines with a centralized template database. The

plan of record was to handle similar log streams in a

distributed manner. In the end, the architecture was still used,

but each incoming log stream was directed to a separate

HELO process. HELO still works in parallel, but each

handles its own source. This is all accomplished currently on

a single server that also functions as the ISC database server.

Log message rates have continued to grow significantly and

a number of optimizations have been made to HELO to

continue to operate on the given hardware.

The first optimization was to dynamically reorder the

template data structure in the HELO process and sort by the

frequency of log message occurrence. The most frequently

occurring log messages have their template moved toward

the front of the list and therefore found sooner in the list

traversal. By doing this dynamically, event storms get moved

to the very beginning of the list and are effectively matched

in constant time. In theory, using a data structure better

suited to searching (O log(n)) makes more sense, and may

be implemented in a later version of HELO. But in practice,

given the distribution of log message frequency, this solution

performs very well and adapts to the ever changing log

streams.

To describe our second optimization, we must first explain

one of the most trying hurdles we have had to deal with. That

being log fragmentation. There have been a number of bugs

across multiple sources that have resulted in the same major

issue for a learning system like HELO. Essentially a log

message that gets randomly split up into two or more log

messages becomes a mutating source where each fragment

gets recognized as a unique log message. When all the

combinations of splitting are considered for a single log

message and then multiplied by the realm of possible log

messages, it is easy to see how HELOs template library

can grow virtually unbounded. This occurred on multiple

occasions and classification times grew to a point where the

classification rate could not keep up with the message rate.

Our solution for this was to deactivate log messages on a

basis of frequency of occurrence as well as consideration

of time since last occurrence. Each HELO process now

maintains a list of active templates to match against. If no

direct matches are found, it then matches against the list

of inactive templates on the server side. If found there, the

template is re-activated. Otherwise the procedure continues

as previously described. Even as the ultimate solution of

correcting log stream mechanics such that fragmentation

does not occur is implemented, the HELO software is now

better suited to handling large event storms.

D. Message Pattern Types

In this section we will outline the different types of log

message patterns that are utilized in our various analyses.

• Single Event Per Failure (Type A): This is what the

rest of the non-log-processing world thinks exists to

indicate a concise single point of failure. However, on

systems greater than size of one, this is rarely the case.

None-the-less, if and when this type of event occurs,

we certainly want to identify its unique occurrence in

one period and not another. But it is certainly not the

only focus of our analysis. This would obviously be too

trivial and uninteresting.

• Multiple Similar Event Per Failure (Type B): Expand-

ing on the pattern presented in A, systems where mul-

tiple similarly classed components exist, it is common

for many, if not each to generate an event of the same

type when a failure occurs in common relevance to

them. Another dimension of multiplicity is that when

a failure occurs, the corresponding failure mode of a

related component oftentimes will generate multiples

of the same message over time as it loops or retries

what it was doing when things failed. And in reality,

both aspects happen such that multiple places generate

multiple log messages. This amplification effect actu-

ally helps to differentiate the two compared periods and

we will compare on a ratio of occurrence basis as well.

• Multiple Different Events Per Failure (Type C): Often

when a failure occurs, it has a certain signature. This is

characterized by a number of log messages, sometimes

in a recurring order (and sometimes not) being gener-

ated. These can come from the same source component

and when they do, the probability of consistent order is

higher. However, they can come from multiple sources

and timing can be much more loose. For example, a

log message may be generated from a network link

failure and that causes a shared file system error to

occur and generate a message of its own. Having the

ability to consider all sources at the same time is very

beneficial in gaining insight as to the nature of various

failure analyses. The ratios of occurrence will also help

differentiate the periods and each of the multiple events

will be represented.

• Constant Rate Events (Type D): There are a good

number of events that occur on a constant or virtually

constant basis. The quintessential example of this type

of event is one initiated by a cron job. This log pattern

would represent as a fairly constant heartbeat across

time. When multiplied by the number of reporting

components, a singular tick becomes a roaring blanket

of white noise. An objective of our methods will be

to eliminate this type of event even though it may

be occurring with great frequency. A quick point to

address an obvious rebuttal. We do not suggest that

analysis of these have no value. Approaches like using

signal processing techniques to these can result in

interesting insights, but is outside the scope of our

comparative set analysis.

• Variable Rate Events (Type E): This class of event is

quite common and very hard to pin down using cursory

log scanning as they will oftentimes show up in both

sets. A heuristic that we consider is that certain log

messages occur more frequently when things are not

in an optimal state. A certain rate for a given log

message may be considered normal, but a heightened

rate may indicate a heightened level of distress. A

human glancing at log files could likely find the event

common to both and discount its relevance. However,

the fact that it could occur with greater frequency is

potentially an important factor. The divesture from the

earlier event types is that we will need to compare rates

instead of counts of occurrences.

IV. LOG PROCESSING LOGISTICS

A. Input Data

The table we create for further analysis is dependent on

both user supplied input data as well as existing HElO

metadata tables.

The following is a list of input variables:

• jobset: The name of the comparison set. Used to

identify the set of data versus comparisons of other

sets.

• fast start: The Unix timestamp of the beginning of the

period where things ran well or normal.

• fast end: The Unix timestamp of the end of the period

where things ran well or normal.

• slow start: The Unix timestamp of the beginning of the

period where things ran poorly.

• slow end: The Unix timestamp of the end of the period

where things ran poorly.

The table with metadata that is generated as the HELO

data in ingested into the database contains slightly summa-

rized message count information. This is our our source for

message data.

CREATE TABLE ‘ Msg Rates ‘ (
‘ TemplateID ‘ i n t (1 1) NOT NULL,
‘ Loca t i on ‘ varchar (3 2) DEFAULT NULL,
‘ EventCount ‘ b i g i n t (2 0) NOT NULL,
‘MsgTime ‘ b i g i n t (2 0) NOT NULL,
‘ Source ‘ varchar (1 6) NOT NULL

DEFAULT ’ unknown ’ ,
‘ F a c i l i t y ‘ varchar (3 2) NOT NULL

DEFAULT ’ none ’ ,
UNIQUE KEY ‘ TemplateID ‘ (‘ TemplateID ‘ ,

‘ Loca t i on ‘ ,
‘MsgTime ‘) ,

KEY ‘ MsgTime Idx ‘ (‘ MsgTime ‘))

Where

• TemplateID: The log message integer id as tagged by

HELO.

• EventCount: The number of messages of type desig-

nated by TemplateID at the MsgTime.

• MsgTime: Unix timestamp.

With this info, we are then able to create our primary data

table for statistical log comparison.

B. Comparison Tables

The table used to hold the statistics is defined as follows:

CREATE TABLE ‘ c o n s i s t e n c y s e t c o u n t s ‘ (
‘ j o b s e t ‘ varchar (1 6) NOT NULL,
‘ TemplateID ‘ i n t (1 1) NOT NULL,
‘ f a s t c o u n t ‘ i n t (1 1) NOT NULL,
‘ s low count ‘ i n t (1 1) NOT NULL,
‘ f a s t r a t e ‘ f l o a t NOT NULL

DEFAULT ’ 0 ’ ,
‘ s l o w r a t e ‘ f l o a t NOT NULL

DEFAULT ’ 0 ’ ,
‘ c o u n t r a t i o ‘ f l o a t NOT NULL

DEFAULT ’ 0 ’ ,
‘ r a t e r a t i o ‘ f l o a t NOT NULL

DEFAULT ’ 0 ’ ,
PRIMARY KEY (‘ j o b s e t ‘ , ‘ TemplateID ‘)) ;

Where

• jobset: The name of the comparison set. Used to

identify the set of data versus comparisons of other

sets.

• TemplateID: The log message integer id as tagged by

HELO.

• fast count: The count of the log message that exists in

the period where things ran fast.

• slow count: The count of the log message that exists

in the period where things ran slow.

• fast rate: The average rate of the log message over the

period where things ran fast.

• slow rate: The average rate of the log message over the

period where things ran slow.

• count ratio: The ratio of occurrence count.

• rate ratio: The ratio of occurrence rates that are nor-

malized by the length each period.

C. Method of Comparison

The first pass is to populate the table with the jobset,

templateids and message counts for the first period. The

following SQL statement accomplishes this.

INSERT INTO c o n s i s t e n c y s e t c o u n t s
SELECT ’ [j o b s e t] ’ , TemplateID ,

sum (EventCount) , 0 , 0 , 0 , 0 , 0
FROM Msg Rates
WHERE MsgTime >=[f a s t s t a r t]

and MsgTime <= [f a s t e n d]
GROUP BY TemplateID

Then, for each row returned by:

SELECT TemplateID , sum (EventCount)
FROM Msg Rates
WHERE MsgTime >=[s l o w s t a r t]

and MsgTime <=[s low end]
GROUP BY TemplateID

Do the following:

INSERT INTO c o n s i s t e n c y s e t c o u n t s
(j o b s e t , TemplateID , f a s t c o u n t ,

s low count , f a s t r a t e , s l o w r a t e)
VALUES(’ [j o b s e t] ’ , [TemplateID] , 0 ,

[sum (EventCount)] , 0 , 0)
ON DUPLICATE KEY
UPDATE s l o w c o u n t =VALUES(s l o w c o u n t)

Next, we calculate rates and ratios with the following:

UPDATE c o n s i s t e n c y s e t c o u n t s
s e t f a s t r a t e =

f a s t c o u n t / [f a s t e n d− f a s t s t a r t] ,
s l o w r a t e =

s l o w c o u n t / [s low end−s l o w s t a r t]
WHERE j o b s e t = ’ [j o b s e t] ’

and,

UPDATE c o n s i s t e n c y s e t c o u n t s
s e t c o u n t r a t i o =

i f (f a s t c o u n t > 0 ,
s l o w c o u n t / f a s t c o u n t ,
999999) ,

r a t e r a t i o =
i f (f a s t r a t e > 0 ,

s l o w r a t e / f a s t r a t e ,
999999)

WHERE j o b s e t = ’ [j o b s e t] ’

V. DATA PRESENTATION

Once the processing of the log messages is complete,

the mechanics of presentation is quite straight forward. It

is accomplished by the following query:

Figure 3: Log comparison.

Figure 4: Time window selection utility.

SELECT ∗ FROM c o n s i s t e n c y s e t c o u n t s
WHERE j o b s e t = ’ [j o b s e t] ’
ORDER BY r a t e r a t i o DESC ,

s l o w c o u n t DESC

This may seem fairly trivial, but during initial develop-

ment, it was not. The first pass only considered total counts.

This identified Log Message Patterns A, B and C with a bias

for those of type C.

It was then that it was realized that not all periods of

comparison would be of same or even similar length. So

we normalized the counts to the number of seconds in the

period. This, mathematically, is the average message rate.

Then we were able to compare these rates, which enables

the identification and separation of Log Message Patterns

D and E. Count ratios are not necessarily useless in light

of the rate ratio comparison as the counts help characterize

the message occurrences. For example, log message #100

occurring 5 times in the fast period and 7 times in the

slow could be significantly different than 50,000 and 70,000

respectively even though they would have the same ratios.

Another example are those messages that occur only in the

slow period and not in the fast period. All of these would

have an infinite ratio, but those that only occurred once may

carry very different weight than those that occurred many

multiple times.

This leads back to a previously mentioned issue of log

fragmentation. These plague the results in that there are

many singular fragments that not surprisingly have one

occurrence in the slow period and no match in the fast

period. Therefore they show up as Log Message Pattern A,

which is certainly is a false positive. Having the message

counts handy help again here in identifying the possible

fragment cases. Further separation occurs in the sorting by

first the rate ratio and secondarily by the slow period count.

This bubbles those with a greater incidence of occurrence to

the top of the list. Also, by comparing rate ratios, we have an

obvious inflection point (ratio 1:1) where things are equal.

However if only the count ratio was considered, we would

have to know the relativity of period lengths to know where

this inflection point exists in the sorted list. This would be

different for each and every comparison. But by comparing

rates, this point is always at the 1:1 ratio mark.

A. Time Window Selection Considerations

The common question when a problem arises is to ask

what happened then, or what was different during that

period. Asking what was different implies a comparison

to some norm. While it would be technically possible to

consider the whole occurrence base for the recorded lifetime,

far too many counter cases can be offered where invalid

results would be produced due to logical changes in the

system. Examples include: software upgrades where new

messages that were not even possible in the past show up,

changing the log reporting level of software components,

adding a new log stream, even other user jobs can cause

shared resources to represent different log signatures. When

considering all the possible log messages, the narrowing of

the basis period to as close a similar period should produce

more accurate results.

This concept of “Fluctuating Normal” is characterized by

the many states and degrees of those states that can be

considered normal. Generally, temporally proximate periods

should statistically provide the best basis for comparison

in that there should be a much smaller probability that the

state (or log message rates) differ due to factors other than

those responsible for the observed performance difference.

For this reason we have provided a simple user-facing utility

to facilitate the entering of these periods of time. Figure 4

show this utility. Most importantly a user has the option to

select any two periods of time for log comparison, and this is

what is shown in the image. However, we expect a common

case to be the desire to compare jobs and we have offered

this functionality as well through the “Job ID” drop down

section. Once both time ranges are adequately defined, the

“See Log Comparison” button activates. Pressing this button

will deploy the log comparison calculations with a result as

in Figure 3.

VI. CONCLUSION

What we have provided is a method to process and

sift through the massive amounts of log messages across

multiple subsystems and present those log messages with

a higher rate of incidence in a period in question. The

goal is to provide a tool to aide in the identification of

potential causes for various problems such as degraded

job performance. This tool can also be used in diagnosing

possible root causes for other observed symptoms in the

maintenance of the systems health.

REFERENCES

[1] J. Fullop, A. Gainaru, and J. Plutchak, “Real time analysis and
event prediction engine,” 2012.

[2] S. Berchtold, C. Böhm, and H.-P. Kriegel, “Improving the
query performance of high-dimensional index structures by
bulk load operations,” in Advances in Database Technolo-
gyEDBT’98. Springer, 1998, pp. 216–230.

