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Abstract. Petascale computing has brought forth a transformational way of science. To the global effort on studying 
climate change, this shift has enabled not only tools more functional and more powerful than before, but also a 
scientific exploration more comprehensive than before. In this work, we report our efforts to employ recent 
ultrascale visualization technologies (SciDAC Ultravis) to study model comparison in terrestrial biogeochemistry 
datasets produced by computation (SciDAC C-LAMP). While many of the current efforts are specific to climate 
modeling research, our method of location-specific summarizing visualization of extreme and normal 
relative distribution patterns is generally applicable to other fields of computational sciences. 

  
 

1. Introduction 
Our driving application is to visualize SciDAC [1] caliber datasets from global coupled climate-carbon cycle 

model simulations produced by different models. We draw our research motivation from the current thrust to 
generate accurate simulations of the global carbon cycle that model the interactions and feedbacks between the 
terrestrial biosphere and the climate system.  

The Carbon-Land Model Intercomparison Project (C-LAMP), www.climatemodeling.org/c-lamp [2] was 
initiated to allow the international scientific community to thoroughly test and compare such terrestrial 
biogeochemistry models through a set of carefully crafted experiments. Well-defined metrics have been 
established for comparison of model results against best-available observational datasets, and models are graded 
on their scientific performance with respect to these metrics. Visualization tools and diagnostics are particularly 
helpful in uncovering model differences and discovering ways for improving individual models. 

The visualization aspects of this task are very demanding for several reasons. Firstly, there are a large 
number of variables involved in each simulation. Exacerbated by the need to study multiple runs in a cohesive 
manner, the combinatorial space that needs to be explored is overwhelming, even just the task of studying two 
variables from two simulation runs. For instance, scientists already have some empiric understanding of how net 
ecosystem exchange relates to net primary productivity. Does the relationship exist as expected in a peta-scale 
simulation, including across different time spans of different runs? This model of investigative study and the need 
of high interactive rates currently present a challenge for large data visualization.  
2. C-LAMP 

The purpose of this model-measurement inter comparison is to allow the international scientific community 
to evaluate the performance of biogeochemical models normally coupled to general circulation models (GCMs) 
[2]. Terrestrial models are scored based on their performance as compared to best-available site, field, and 
satellite observations through a rigorous set of metrics. To this end, we encourage you to provide feedback on the 
experimental protocol, the metrics used to evaluate model performance, and the observational datasets available 
for use in the inter comparison. The C-LAMP project bridges the climate modeling community and the 
measurement community. This role of C-LAMP enables significant potential of model improvement and more 
comprehensive measurement campaigns. 

The C-LAMP project conducts two types of experiments. In the first type of experiments, biogeochemical 
land surface models are forced with an improved NCEP/NCAR reanalysis climate dataset. In these offline runs, 
the objective is to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple 



 

sites, and to examine the influence of climate variability, prescribed atmospheric CO2 concentrations, and land 
cover change on terrestrial carbon fluxes during the 20th century, and specifically during the period for which the 
reanalysis data are available (1948-2004). 

In the second type of experiments, an active atmosphere model is used to couple energy flows between the 
atmosphere and the terrestrial biosphere. However, atmospheric CO2 follows a prescribed trajectory for both 
steady state and transient components of the experiment. The prescribed CO2 is radioactively active and sea 
surface temperatures (SSTs) and ocean carbon fluxes are prescribed. The objective of these simulations is to 
examine the effect of a coupled biosphere-atmosphere on carbon fluxes and climate during the 20th century. 
3. Parallel Query-Driven Visualization 
Decadal to century time scale climate simulations typically output a large number of two- and three-dimensional 
variables at regular intervals, usually monthly. While identifying features is difficult, it is actually intuitive and 
practical to select only a subset of the data from within that high-dimensional variable space, to obtain a 
qualitative understanding of the overall results. This approach can be easily implemented if the resulting dataset 
can be stored entirely in-core. However, to handle larger datasets, a more sophisticated solution is necessary. 

Our solution [3] involves designing specialized scalable visualization data servers with large-scale 
parallelism. Our index system indexes general data items, including vertices, voxels, or particles, and is 
independent of grid type. The core data structure for indexing is an optimized M-ary search tree. The tree 
structure only amounts to ~1% the size of the whole dataset. The dataset can be stored externally on hard drives in 
a compressed manner. Only parts of the data that are used by the scientist are decompressed (and cached). The 
compression rates vary from dataset to dataset. For some typical datasets, we obtained a 20x compression rates, 
while we could obtain as low as a 4x compression on highly turbulent or noisy datasets. Using these rates, we 
conservatively estimate that a mid-sized cluster could already support parallel visualization of a dynamically 
queried dataset of 1 TeraByte (TB) size. 

The M-ary tree uses a large branching factor, and serves the role of metadata to guide a search process. The 
branching factor is one of the primary differences between this search data structure and previous data structures, 
such as interval tree, k-d tree, quadtree and octree. Due to the large branching factor, M, the M-ary search tree 
requires little storage space. The data is not stored in the tree, but in a linear list sorted by a key function. The leaf 
nodes of the tree store only pointers to the respective data records in a sorted linear list. We have discovered that 
conventional methods to access records by traversing the tree are too expensive, both in terms of caching 
performance and the large number of addressing operations. We use a novel method to accelerate range searches 
in an M-ary tree to address this, optimized specifically for multivariate datasets [3].  

Data items are partitioned into groups by round-robin assignment according to high-dimensional space 
filling curve [8] order in attribute space. We use this type of data partition to distribute data amongst all 
visualization data servers equally. Thereby, we are able to achieve a nearly optimal load-balance for almost all 
kinds of queries. The M-ary search tree is then used to manage the data on each server. Our approach is relatively 
easy to deploy on networked commodity computers, whether clustered or not. The necessary number of parallel 
data servers depends on the size of the dataset.  
4. Concurrent Visualization of Multiple Patterns 
It is common for scientific visualization production tools to provide side-by-side images showing various results 
of significance. This is particularly true when handling time-varying datasets with a large number of variables. 
However, it is often desirable to have a general scientific visualization method to summarize the data into the 
fewest possible images. As shown in [5] this is a hard problem. It is often impossible without reducing the data of 
each variable. One way to do so is by feature detection and extraction. Previous authors [6-7] have presented a 
number of successful example methods based on feature extraction. A common limitation of these methods, 
however, is the requirement to have features accurately defined before a visualization can be created. This is 
particularly hard when the purpose is to provide initial concepts of unknown features involving unprecedented 
numbers of concurrent variables. 

For comparative visualization of unknown model differences in C-LAMP, we use a location-specific 
summarizing method to visualize extreme and normal relative patterns among multiple concurrent attributes [4]. 



 

With each attribute representing a different physical variable, a different model or simulation run, we provide a 
novel comparative perspective of the data. Our motivation is to guide a user’s attention to a much-reduced subset 
of a large and otherwise incomprehensible multivariate dataset. In order to do such guidance without requiring too 
much user input, we base our methods on relative distribution patterns of multiple variables. In the overall 
problem space formed by all concurrent attributes, we term each subset of interest in our framework an attribute-
specific subspace, because each subspace can eventually be represented by one tag that is in direct 
correspondence with an attribute.   

The input to our method [4] is a general dataset that has, at each location, an associated attribute set. Each 
attribute must have a value at each location (point). We normalize all attributes to a canonical range. Also, the 
user supplies attribute target values that allow us to determine if the value at any location is “good”, i.e. close to 
its target value. Common examples are: highest possible temperature around the globe, heaviest seasonal rainfall 
around the globe or longest period of drought around the globe. At each location, classification is based on which 
attribute at this location is the closest to its target value. Each location is classified and assigned to at most one 
attribute-specific subspace. When all values on a location are sufficiently far away from the target values, this 
location is thresholded and assigned to no subspace. If it is a dataset with 20 concurrent variables, after 
classification we always have 20 attribute-specific subspaces. To render, each subspace gets a different color. In 
renderings, thresholded locations appear as empty spaces.  

Let us illustrate how we intend the technique to be used in the following. A typical time-varying dataset 
contains a set of variables associated with each point. We can simply treat the temporal values of a single variable 
associated with each spatial location as different attributes. Please note in our method, extreme vs. normal are 
equivalent because it’s just a matter of picking an extreme value or an average value as the target. In this case, we 
show, in a location specific manner, for this one variable the timesteps in which interesting features arise. This 
could be used to discern which timesteps would be most valuable in that variable’s evolution over time.  
5. Results and Discussion 

To application scientists, parallel query-driven visualization serves as a data reduction, which we have 
accelerated to interactive rates [3]. The concurrent visualization method based on attribute subspaces is a 
subsequent step to summarize multiple patterns according to their relative strengths so that overall trends can be 
visually compared, analyzed and comprehended [4]. 
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Figure 1. A location-specific summarizing visualization of extreme and normal relative distribution patterns 
among CASA and CN models in C-LAMP 1.2 and 1.4 runs. The variables considered are NEE (red color), NPP 
(orange color) and TLAI (yellow color) in January and July of 1990. 

 

As typical with any climate modeling efforts, the same models would be run under different conditions. To 
demonstrate our approach and typical use cases, we show three different types of runs: (i) control run (C-LAMP 
1.2), (ii) varying climate transient run (C-LAMP 1.3) and (iii) varying climate, CO2 and N deposition transient run 
(C-LAMP 1.3). Under each type of run, there are two models from NCAR Community Climate System Model 
Version 3 (CCSM3), specifically CCSM3-CASA and CCSM3-CN. Hence we have in total 6 different simulation 



 

scenarios to visualize. The time span considered is the decade from 1990 till 1999. In this section, we show major 
patterns of three variables: net ecosystem exchange of carbon (NEE), net primary production (NPP) and total leaf 
area index (TLAI). While we find that, in reference to the general climate trends of these three variables, the 
differences among models are visually discernible in several cases, within both models the results from 1.2 and 
1.3 runs seem visually indistinguishable. For reason of space, we do not show results from the 1.3 run. 

When viewing more than one variable in one setting, differences in models become apparent.  In Figure 1, 
“high,” “low” and “mid” mean that the target values for all three variables are chosen to be global maximum, 
global minimum and mid-way between global extremes, respectively. In terms of relative strength (or relative 
variation patterns) among NEE, NPP and TLAI, CASA and CN largely agree with high and low distributions in 
both January and July in 1990 (peak summer and peak winter months). The mid range distributions do reveal 
differences in high latitude areas, large deserts and mountainous (high elevation) regions. 
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Figure 2. Year long average computed over 1990-1999. For each of NEE, NPP and TLAI and in 1.2 and 1.4 runs, which year 
is the closest to the decadal maximum (High), mid-point of the possible range (Mid) and the decadal minimum value (Low)? 

 

In Figure 2 with TLAI, 1.2 and 1.4 are visually similar. The heavier coupling in 1.4 does not seem to change 
relative strength in temporal distribution of yearly averages in the decade.  Both CASA and CN seem to agree that 
1990 has the lowest TLAI in the decade and in the geographic regions of barren lands (Arctic, Antarctic, Sahara 
and Tibet).  As to relatively high TLAI in the decade, CASA still favors 1990 (closer to decadal-global extremes) 
in South America and sub-Sahara Africa. Also the earlier three years have high TLAI in all other areas of the 
globe. This pattern of earlier years in 90's showing high relative TLAI is not in CN runs.  With both NEE and 
NPP, CASA and CN largely agree, but are, however, off by a year or two (both for high and lows) in some cases. 
For the NPP modeling results (both High-CASA and Low-CASA), the Amazon mostly shows the first half of the 
90’s to have lower values. In CN, the Amazon shows high NPP more uniformly distributed throughout the 
decade. No year during the 90s showed "abnormally" low NPP in CN models. 

As another example, we calculate Pearson’s correlation coefficient between pairs of variables for each 
simulation scenario over 1990-1999 (Figure 3). By viewing all models concurrently, some model trends are 
clearly visible.  Since 1.2 and 1.3 are so similar, only 1.2 is represented in this image, i.e. no visible green or 
yellow.  C-LAMP 1.4 is represented as blue and light blue (CASA and CN), so blue in an image represents the 
more coupled the run.  NEE-NPP shows stronger positive correlation in more coupled runs in Eurasia, whereas 
NEE-TLAI shows stronger positive correlation more in less coupled runs in the same area. With respect to 
correlation we would expect this viewing to appear completely random, but the presence of contiguous areas of 
identical color highlight geographical regions of interest with a model. 
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Figure 3. Model differences in bi-variate Pearson’s correlation coefficient, computed over 1990-1999. 
 

In the future, we plan to engage in even closer collaboration with C-LAMP researchers because few of the 
model differences we have identified so far have clear explanations from the modeling community. We also plan 
more research for evaluating model differences in the context of model biases from real observational data.  
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