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Abstract
In this work we present a point classification algorithm for multi-variate data.Our method is based on the concept
of attribute subspaces, which are derived from a set of user specified attribute target values. Our classification
approach enables users to visually distinguish regions of saliency through concurrent viewing of these subspaces
in single images. We also allow a user to threshold the data according to a specified distance from attribute target
values. Based on the degree of thresholding, the remaining data points are assigned radii of influence that are used
for the final coloring. This limits the view to only those points that are most relevant, while maintaining a similar
visual context.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms

1. Introduction

It is common for scientific visualization production tools to
provide side-by-side images showing various results of sig-
nificance. This is particularly true for applications involv-
ing time-varying datasets with a large number of variables.
However, application scientists would often prefer to have
these results summarized into the fewest possible images. In
this paper, we are interested in developing a general scien-
tific visualization method that addresses this issue. In partic-
ular, we summarize multivariate data for previewing, i.e. we
provide general information about a dataset that a user has a
limited knowledge of.

Our method produces single images that fuse key aspects
of multiple attributes of the data. From those images, one can
discover prominent inter-variable relationships, even though
the renderings are independent among variables. Our ap-
proach also produces simple statistical evaluations of the
data that can be used to effectively navigate the dataset.
For instance, which timesteps are important to examine, and
what particular variables in those timesteps deserve special
attention.

In the remainder of this paper, we first describe the related
work of this research in Section2. In Section 3, we present
our design of the overall system, followed by implementa-
tion details in Section4. Finally, our results and discussion
are provided in Sections5 and 6 respectively, and then con-
cluded in Section7.

2. Related Works

When dealing with multivariate data, the most straightfor-
ward approach is to treat each variable separately. However,
that approach is too simplistic and still leaves much to be
desired. The visualization research community has under-
taken the task of finding more capable methods. In particu-
lar, current literature usually falls within two categories: fus-
ing multiple variables into single images [BHW06,KML99,
REHL03, HA04], or viewing relationships between vari-
ables [KMM ∗01, STS06]. A great survey of many of such
techniques has been presented by Wong and Bergeron in
[WB97].

Creating images from many variables is a hard problem,
as shown in [Tay02]. It is often impossible without some-
how reducing the data of each variable. One way to do this
is to focus on only the salient regions of each, namely by
feature detection and extraction. If features can be identified
and highlighted, it becomes much easier to render features of
different variables concurrently. [LPK05, WH01, WBS∗05]
have presented a number of successful example methods
based on feature extraction. A common limitation of these
methods, however, is the a priori requirement to have fea-
tures accurately defined before a visualization can be cre-
ated. To address this limitation, Jänicke et al. recently de-
veloped a region detection method that is both application-
independent and that doesn’t rely on user input [JWSK07].
Their approach extends local statistical complexity of cellu-
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Figure 1: Images created by ncBrowse (http://www.epic.noaa.gov/java/ncBrowse/) from single variables of the jet combustion
dataset (a)-(e). Image created by our method fusing high valued ranges of each of the single variable images (f).

lar automata to perform region detection in applications that
can be described by PDEs.

Woodring and Shen proposed chronovolumes as a tech-
nique for displaying time varying volumetric data [WS03].
By treating different timesteps as different variables on the
same voxel, their approach also provides some inspiration to
multivariate data visualization. Images created by chrono-
volumes contain a combination of all timesteps of interest,
while maintaining a context of surrounding earlier and later
timesteps. This is done by adding an integration through
time to the raycasting pipeline. They also propose a similar
coloring scheme in which they simply assign each timestep
its own color. They suggest 20 as a limit on the number of
discernible colors. This is an existing example that demon-
strates the power of attribute-specific subspaces. However,
in this case, it is specific to the dimension of time.

Multivariate visualization is a unique area due to the large
number of variables. This is compounded when timesteps
are considered as independent variables and the combina-
torial space to explore is exponentially large. This special
research need of multivariate visualization calls for methods
to provide summarizing previews of data. From this respect,
our method is based on logical operators that can be com-

bined in a customizable manner. These basic operators pro-
vide a way to visually gauge relative strength of variables,
and hence guide a user’s attention to a much reduced sub-
set of an otherwise large and incomprehensible multivariate
dataset. In [dSB04], dos Santos and Brodlie introduce a con-
ceptually similar approach to handle multivariate and mul-
tidimensional data. In their work, a filtering, or subsetting,
operation is used to select a subset of all variables and di-
mensions to create a smaller space from the original high
dimensional space. Woodring and Shen further extended the
idea to include set operations [WS06]. A set can be specific
in to any variable as a boolean relationship. Sets can be com-
bined using set operations in an effort to select voxels of in-
terest to the user.

In both of these representative works, selection choices
are decided and applied uniformly for the entire dataset. Our
work is different in that the variable or attribute we show
is eventually a per point selection. In addition, we do not
consider spatial dimension for subsetting. In other words,
the subspaces we create are dependent on both attributes and
points.

Finally we must note that many pioneering researchers
have studied how to provide succinct and informative visu-
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alization of multivariate data through non-photorealistic and
illustrative approaches. There, the focus of visualization re-
search has been to develop innovative visual cues inspired
by artistic as well as real world domains [HE02]. Common
technical approaches in the domain of non-photorealistic
rendering include texture synthesis [LEQ∗07, WBS∗05],
glyphs [HE02] and stippling effects [LMT∗03], etc. How-
ever, in those works, the foci are features that are well under-
stood (including the definition of the features and the most
effective visual analogies for those features). The starting
point of our work is different in that our focus is to develop
basic operators that can be used to define attribute-specific
subspaces and to demonstrate their usefulness. Current so-
phisticated and powerful illustrative rendering techniques
can directly leverage our definition of attribute-specific sub-
spaces for better results.

3. The Approach

Our prototype system is named massSIV (multiple attribute
specific subspace visualization). We intend for massSIV to
be generally applicable, however, it is currently designed pri-
marily for scientific simulations that produce volume data.
We take as input a general dataset that has, at each loca-
tion, an associated attribute set. Each attribute must have a
value at each location (point). Also, the user supplies a set
of attribute target values that allow us to determine for any
value at any location, whether or not that value is consid-
ered a "good" one, i.e. close to its target value. Our goal is to
then provide a rendering of the dataset that is colored based
on all attributes. We first split the colorspace, to associate
with each attribute its own color. Then, for every location,
we select a single value, the one closest to its attribute target
value. However, if no values are close to their target values,
we may threshold that point. We then redistribute the open
spaces created by thresholding to the remaining points, giv-
ing each an area of the final space that it may color. After a
coloring is chosen, any set of points with the same color is
an attribute subspace. The selection of a volume’s attribute
set is arbitrary, therefore there may be a wide variation, and
hence flexibility, in the combination of attribute subspaces.

3.1. Attribute Set Selection

A typical time-varying dataset contains a set of variables as-
sociated with each point. The obvious choice for an attribute
set is to simply use the variables already associated with
each point, and render a single timestep. Reduction of the
attributes allows us to see salient regions for all variables at
once. We can also focus the attribute set on the timesteps of
a dataset. Here, the attribute set for each point would be a
single variable’s value across many timesteps. In this case,
we show, for a variable, in which timesteps interesting fea-
tures arise. If interest lies with a certain variable, this could
be used to help determine which timesteps would be most
valuable in that variable’s evaluation. For this reason, our

program outputs all attributes ranked by the percentage of
the image they color. Similarly, we could reduce the spatial
dimensionality of a dataset. The attribute set would be, for a
2-D slice of the volume, a certain variable’s value across the
remaining dimension. The resulting rankings could then be
used to determine a slice of the volume to focus on. In the
following sections we assume the attribute set is a point’s
variables.

3.2. Creating Attribute Subspaces

Now that the dataset has an attribute set, i.e. each point has
associated with it a set of values, we create attribute sub-
spaces. Each value at every point corresponds to a value of
one of the attributes in the attribute set. As stated, we select a
single value that is closest to its attribute target value. How-
ever, this is not relative to values of a point, but to all the
values of an attribute. We do this by calculating for each at-
tribute, the set of distances from each value to that attribute’s
target value. Then, for every value of a point, we calculate
how far away from the median of the distance set that value
is. We then select a point’s single value to be the one from
the initial set of values that is both close to the target value,
and farthest from the median. By doing this, we ensure that a
value is "good" relative to the entire set values of an attribute,
i.e. we say that value has a high impact on an attribute at that
point.

Figure 2: (a) Simple 3 point dataset. (b) The distance from
target values (distance set) for each attribute. (c) The dis-
tance from median of distance set: notice P1’s second value
is closer to its target value, but its first value is chosen be-
cause it is much closer relative to how close the rest of the
points’ first values are to A1’s target value. (d) The new vol-
ume, the starting point for the redistribution of open spaces.
(e) Key for Figures2 and 3.

Along with a point’s single value, we also store which
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attribute that value came from, in the form of an integer at-
tribute ID. The final dataset we create will contain only such
attribute IDs, however, based on neighboring points’ values,
a point’s current attribute ID may change. We call the set of
points colored by a specific attribute an attribute subspace of
the volume. We realize that often it is impossible to define a
set of target values since it is unknown which values are in-
teresting. If no target values are specified we take the highest
values for each attribute to be the target values. We also al-
low for average values to be used for the target values, in the
case that the high values of attributes are outliers. Figure2
details a simple example of creating attribute subspaces.

3.3. Thresholding

We consider salient regions to be those in which attribute
values are near attribute target values. For this reason, thresh-
olding in massSIV is not done by removing points below or
above a certain value, but by removing points that contain no
values that are near their attribute target values. A high level
of thresholding then focuses on only those values closest to
the attribute target values, and therefore the most salient re-
gions. The user may specify a distance from the target values
to use as a threshold. By default, we threshold all points that
contain no values that are closer than the median of the dis-
tance set from the attribute target values. In Figure2 P3 is
thresholded.

3.4. Redistribution of Open Spaces

Although thresholding highlights the points closest to at-
tribute target values, we would also like to maintain a re-
gional context in the case of few remaining points. To
achieve this, we redistribute the open space created by
thresholding to the remaining points. We give each remain-
ing point its own radius of influence. Firstly, for each at-
tribute we calculate an attribute volume percentage. This is
the number of remaining points associated with that attribute
divided by the total number of remaining points. We then
normalize the values for each attribute, making each point,
P, the value that corresponds to a percentage of its attribute,
norm(P). A point’s volume, volume(P), is then that point’s
percentage of its attribute’s volume percentage. To find a
point’s radius, we simply set a point’s volume equal to the
volume of a sphere and solve for the radius:

r =
3

√

3∗volume(P)

4π
(1)

We denote the radius of aP as radius(P). An example of
radii calculations is provided in Figure3.

3.5. Finalizing the Attribute Subspaces

To maintain a sense of spatial locality, we have a point’s in-
fluence over another point dissipate within it’s area of influ-
ence, the farther away the two points are. We achieve this

Figure 3: Detailed calculation of P1’s radius of influence. In
this example, there are only 4 points remaining after thresh-
olding a a 2-D 9x9 dataset (81 is the total area of the space).
Note: Equation1 is for radius calculation in 3-D.

with a simple linear function. For two points,P1 and P2,
dist(P1,P2) is the euclidean distance between those points.
For a pointP2 that is withinP1’s area of influence,P1’s in-
fluence onP2 is then:

f (P1,P2) = norm(P1)

(

1−
dist(P1,P2)

radius(P1)

)

(2)

This value is calculated between each point,P, and all
other points that containP within their radii.P then receives
the value of the point containingP with the maximum value
of Equation 2. The final output of our program is a spatial
dataset where each location is reduced to a single integer tag
that corresponds to one attribute, and therefore one color.
In the case that a point falls within no other points’ radii
of influence, that point is assigned the value zero, which in
our rendering is represented by black (2-D): the background
color, or clear color (3-D): fully transparent. This dataset is
the completed set of attribute subspaces.

4. The Renderer

2-D images created from our resulting datasets are simple
bitmaps created from a 2-dimensional slice of the volume,
with each point colored by its attribute color. To visual-
ize the volumes resulting from our method, we have imple-
mented an hardware-accelerated volume renderer for inter-
acting with tag volumes. The unordered and discrete nature
of tags makes it impossible to use traditional linear interpo-
lation for determining a sample’s tag, as it may introduce
false intermediate tags between segments. Nearest neighbor
interpolation, on the other hand, produces correct results but
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the voxel resolution is immediately apparent and can detract
from the visualization.

Most previous approaches to improved boundary filter-
ing of tagged volumes rely on several passes [TSH98] or
a maximum of four tags [FHN∗05] for correct interpolation.
To avoid these limits, we have developed an interpolation
scheme based on a sample’s proximity to a gradient-aligned
neighbor. We evaluate this proximity using the sample’s lin-
early interpolated tag to choose between the sample’s near-
est tag and the gradient neighbor’s nearest tag. This method
requires two textures to be sent to the GPU. The first tex-
ture contains only the tags and uses a nearest neighbor fil-
ter. The second texture contains both the tag gradients and
the tags, using a linear filter. For the gradient calculation,
we found central differencing to produce gradients of poor
quality across tag boundaries [FHN∗05]. Instead, we com-
pute the tag gradients using linear regression over a 3x3x3
neighborhood [NCKG00].

For the rendering, view-aligned slices are rendered in
back-to-front order, and a fragment program is invoked
for each fragment across a slice. To determine a sample’s
tag t at subvoxel resolution, we use the gradient to locate
the gradient-aligned neighbor, i.e., the nearest neighboring
voxel to the sample along the gradient direction. In most in-
stances, the value of the tag around the sample will range
from the nearest tagtn to the gradient tagtg, with a smooth
boundary lying halfway betweentn andtg. We use the linear
tag tl to locate this halfway point. To computet smoothly,
then, we examine the difference betweentl and the other two
tags and sett to the closer. Figure4 illustrates an example
wheretn is closer totl . As shown in the following equation,
if tl is closer to the nearest tag,t = tn. Otherwiset = tg.

t =

{

tn : |tn− tl | < |tg− tl |
tg : otherwise

The computed tag then indexes into a colormap to retrieve
the sample’s color and opacity. A simple interface allows
users to alter each tag’s color and opacity. With a volume size
of 120x480x512, a 512x512 viewport, and a sampling rate of
1.0, we achieve a frame rate of 8-11 fps on a Dell Precision
470 workstation using an NVIDIA Quadro FX 3450 GPU.

5. Results

We reduce multiple images, each representing a data at-
tribute, into a single image, while maintaining discernible
features. However, the root of our approach is not in high-
lighting the most salient regions of the dataset, but to do so
at every point. Just as single variable renderings are inde-
pendent of each other, so are attribute subspaces. However,
through thresholding, we do focus on the areas of the volume
where attributes have a high correlation to the attribute target
values. In the extreme thresholding case, we show only the

(a) Linear Filter (b) Nearest Filter (c) Final Tag

Figure 4: To avoid the inaccuracy of linear filtering and the
coarse appearance of nearest filtering, tags are interpolated
at subvoxel precision with a hybrid filtering approach. (a)
The tag and gradient are retrieved using linear interpola-
tion for the encircled fragment. (b) The tag is retrieved for
the same fragment using nearest filtering. Additionally, the
nearest tag along the gradient is retrieved. (c) The final fil-
tered tag is determined by using the linear tag to find the
closer of the gradient’s and fragment’s nearest tags. In this
case, the nearest tag is chosen.

single points that correspond to the values closest to the at-
tribute target values. Thresholding does highlight regions of
interest in a more global sense. Using a point’s radius of in-
fluence, we also accentuate the area of the volume likley con-
taining events surrounding those highest impact points. We
show results from three datasets, the first is a 480x720x120
jet combustion dataset containing five variables, we use only
the last timestep (timestep 116). The second, a 256x128 cli-
mate dataset containing 7 variables, again we only use one
timestep (corresponds to the year 2000). Lastly, a 128x64
climate dataset containing one variable: aCO2 measurement
taken hourly over several years, we use the first hour of Jan.
1 for ten years, 1890-1899.

5.1. Concurrent Views

The typical use of our program is to provide a single image
showing salient regions of multiple attributes as apposed to
showing multiple side-by-side images. In Figure1 we show
the single variable renderings, of a single slice of the volume,
of the jet combustion dataset along with the single image
resulting from our approach corresponding to the same slice.
We did not change the natural coloring of ncBrowse, and
in those images, the points with high values are colored in
shades of red that clearly stand out. For this reason, we ran
our program with the variables’ highest values used as the
attribute target values. The regions of high values in each
single variable image correspond to one of the five colors in
the image resulting from our approach.

Also from the jet combustion dataset, we show 3-D ren-
derings of the dataset that is the output from our program.
In Figure 5, we show the results of our program from using
both maximum values as attribute target values and average
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(a)

(b)

Figure 5: Rendering of the jet combustion dataset with the
attributes’ average values (a) and attributes’ maximum val-
ues (b) used for the attribute target values. Attribute color
key included in Figure6

variable values as the attribute target values. Figure5(b) is
simply the 3-D version of Figure1(f), and therefore a sum-
mary of 5 3-D single variable renderings.

5.2. Highlighting Salient Regions

We present two examples of using thresholding to highlight
salient regions. In Figure6, the output from our program ran
on the jet combustion dataset is colored by only 4.7% of the

Figure 6: (a)Rendering of the jet combustion dataset with
attributes’ maximum values used for attribute target values,
and all but 4.7% of points thresholded. (b) Attribute coloring
key for combustion dataset images.

number of points in the initial dataset. The radii of influence
highlight regions associated with the points not thresholded,
which is especially important for those small regions. This
dataset was also created using the attributes’ maximum val-
ues as the attribute target values.

In Figure 7 we show our program’s default output on
the 7-variable climate dataset (2-D). To clearly illustrate the
thresholding/area of influence relationship, we present the
second image of Figure7. This image has the maximum
level of thresholding, all but 5 points are thresholded. In this
image we highlight the areas surrounding those points, this
is an indication of the general areas that are likely to be of
interest for those attributes.

Figure 7 is a representative example of the utility of mass-
SIV. Specifically, this visualization shows the most extreme
variable among the 7 variables on each geographical loca-
tion. The target audience for such a viewing are those who
do not already have an in-depth understanding of the prob-
lem domain; our image illustrates the following informa-
tion. The black regions represent places where all 7 variables
are not sufficiently close to the target values, and have been
thresholded. Examples of such regions include the flat lands
in Africa, north-east of China, central regions in U.S. and
parts of Russia. The specific humidity is high over the trop-
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Figure 7: Climate dataset with maximum attribute target
values. Default (a) and full (b) thresholding. (c) Attribute
coloring key.

ical oceans because the humidity is high in these warm re-
gions over water. Temperatures are high in the South-Pacific
(South-Pacific warm pool) and off the coast of Europe due
to the Meridional Overturning Circulation. PBL (planetary
boundary layer) height is low only over the oceans where
other factors are not dominant. Stddev of orography is high
in mountainous regions, often forming a "bulls eye" around
surface geopotential, where the altitude is high enough to
dominate the stddev of orography. Surface pressure is low in
the Arctic and high in the southern oceans due to wind circu-
lation patterns. We can see the height of ice cap on Antarc-
tica delineated by the abrupt "jump" in surface geopotential.
The same can be seen around Greenland. In other locations
around the globe, only geographic regions such as Tibet,
American Rockies and Andes show such abnormal surface
geopotential due to their great altitudes.

5.3. Narrowing Exploration Space

Lastly, we give an example of how massSIV can be used for
dataset exploration. In Figure8 we show the output of our
method run on aCO2 measurement climate dataset over ten
timesteps. This is a single variable dataset, so each color rep-

Figure 8: Concurrent rendering of 10 timesteps of the CO2
measurement dataset (a). A sample gray-scale image of Jan.
1, 1890, the highest ranked attribute (b). The rankings of all
10 timesteps (c).

resents the values at a different timestep. Our program out-
puts the size of each attribute space, which suggests which
timesteps contain the most impactful points. We also show
the gray-scale image corresponding to the largest attribute
subspace (red). This information can be used to determine
which timestep a user should render, via a favorite single
variable renderer.

6. Discussion

To provide single summarizing images/volumes we employ
a data reduction in attribute space. As with any approach
utilizing simplification or compression, there are many con-
cerns as to whether or not the results are oversimplified. To
this end, our intention is for massSIV to be used in an appli-
cation driven manner, so that the simplification can aid users
in excluding areas not of interest.

Another issue is the sensitivity of target values. In our ad-
mittedly limited range of tested target values, we had few
problems with sensitivity. However, there are cases in which
this could be an issue, the following discussion can be used
as a guide for appropriate uses of our approach. In cases of
simple attributes, like the climate dataset’s land ocean tran-
sition mask (1 for land, 0 for ocean), even changes in other
attributes’ target values could drastically alter its represent-
ing attribute subspace.

There are other cases of target value sensitivity, but they
are relatively predictable. For instance, an attribute with a
large variance would certainly differ (possibly greatly) with
changes in target values. The inverse of this is shown in Fig-
ure 5, stoichiometric mixture fraction only slightly changes
between its average and maximum value, i.e. it has low
standard deviation. Also, although we don’t provide render-
ings based on attribute relationships, attribute relationships
could cause target value sensitivity. Areas where attributes
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are closely related represent possible areas where target val-
ues would be sensitive. However, this should only be an issue
if those attributes are proportional throughout the volume,
i.e. the attributes would have to be similarly close to their
distance sets.

7. Conclusion and Future Work

In order for a user to handle a problem space of overwhelm-
ing complexity, a concise but accurate big picture is of crit-
ical importance. Many subsequent analysis tasks depend on
this capability. Unfortunately, prevalent current practices of-
ten lack generality and rely on past experiences. This is in-
deed a hard problem of data analytics that calls for much
concerted research efforts. Our approach is a simple first
step.

Our method can be regarded as a point-based classifica-
tion approach. The added components include data filter-
ing, radii of influence and statistical evaluations. Through
these, we have achieved interesting results. Concepts central
in our approach are: allowing abstraction of the data space by
not constraining the set of values associated with each data
point, data reduction by selecting a single value from that set
to represent each point and the redistribution of open space
resulting from data reduction. By integrating these concepts
into a system, we have developed a straightforward way to
provide summarizing views of multivariate datasets.

The interesting results we have achieved using this spe-
cific instance of the implementation leads us to believe that
this is a promising domain for future research. In particu-
lar, we intend to augment our approach to display areas of
attribute relationships. Also, our color selection is entirely
arbitrary, a direction for research is a comprehensive study
of perceptually salient color selection.
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