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Abstract—Remote visualization is an enabling technology aiming to resolve the barrier of physical distance. Although many

researchers have developed innovative algorithms for remote visualization, previous work has focused little on systematically

investigating optimal configurations of remote visualization architectures. In this paper, we study caching and prefetching, an important

aspect of such architecture design, in order to optimize the fetch time in a remote visualization system. Unlike a processor cache or

Web cache, caching for remote visualization is unique and complex. Through actual experimentation and numerical simulation, we

have discovered ways to systematically evaluate and search for optimal configurations of remote visualization caches under various

scenarios, such as different network speeds, sizes of data for user requests, prefetch schemes, cache depletion schemes, etc. We

have also designed a practical infrastructure software to adaptively optimize the caching architecture of general remote visualization

systems, when a different application is started or the network condition varies. The lower bound of achievable latency discovered with

our approach can aid the design of remote visualization algorithms and the selection of suitable network layouts for a remote

visualization system.

Index Terms—Remote visualization, distributed visualization, performance analysis, caching.
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1 INTRODUCTION

REMOTE visualization enables users to access visualization
data stored at remote and dispersed locations without

making complete local replicas.
A primary performance measure of remote visualization is

the latency incurred during user interaction. The absolute
latency is measured from the time a user request is generated,
for example, choosing a new view angle or a new isovalue
until the request is fulfilled. Reducing the latency is a
challenging problem in remote visualization.

Latency hiding techniques have recently become a major
approach to addressing this problem. In a nutshell, they aim
to trade temporary visual quality for a steadily low
response time, for instance, by intelligently using approx-
imations of the requested data while the data is still being
transmitted. In this case, user-perceived latency can be
greatly reduced with the same absolute latency.

Reducing the absolute latency in remote visualization, if
addressed properly, would invariably improve the overall
quality of the user’s experience. When latency hiding

methods are not employed, then the incurred latency
directly impacts the rate of client-side user interaction.
With latency hiding techniques, a lower absolute latency
would require fewer approximations, leading to better
visual quality and accuracy during a visualization session.

A general strategy to reduce absolute latency is to
prefetch data and use caching, similar to the use of processor
and Web caches. The caching mechanisms needed by
remote visualization, however, are unique in several
important ways (more details in Section 2). From an
architectural design perspective, we are interested in the
question of whether it is possible to systematically evaluate
and search for optimal cache configurations for remote
visualization under various scenarios such as different
network speeds, sizes of user requested data, rates of user
interaction, and cache depletion schemes. If the answer is
yes, we would like to leverage the knowledge learned to
design a practical scheme for adaptively optimizing the
caching architecture of general remote visualization sys-
tems whenever a new application is started or the overall
environment adapts over time. To the best of our knowl-
edge, this topic has not been a previous focus in the field.

In this paper, we base our study on actual experimenta-
tion, as well as numerical simulation. First, we developed a
network-aware caching software, called inCache, that runs
on most major flavors of Linux. With commands sent
through a Transmission Control Protocol (TCP) socket at
runtime, each inCache process running on an independent
network node can be individually controlled to switch to
new cache configurations. Such a runtime adaptiveness
enabled us to experiment with actual real-world applica-
tions in search of optimal cache configurations. Second,
based on lessons learned through experiments, we further
developed an efficient method of numerical simulation to
discover optimized cache configurations for a remote
visualization system. Although experiments often take
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hours to finish, numerical simulation using a single CPU
completes with comparable results with subsecond effi-
ciency. Hence, a configuration with minimized fetch time
under current network situation can be instantly deter-
mined and applied. From an application developer’s
perspective, a chain of inCache nodes orchestrated by
numerical simulation could serve as a black box of
prefetching and caching that transparently adapts to
temporal changes in the network. As we will show in
Section 6, near optimal cache configurations that maximize
utilization of network bandwidth can be discovered using
our approach.

Another use of our findings is also interesting. That is, to
attack the problem of designing latency hiding algorithms
from a “negative angle.” By finding the lower bound of
absolute latency for remote visualization on a network, for
any specific combination of targeted user request rate and
average fetch size, one can predict that some algorithm will
fail to hide latency effects from the user because it is
impossible to receive the needed updates fast enough,
whereas for others, there is still room to adapt for more
functionality and better quality. In turn, by fixing the
algorithm and user requirements, one can evaluate various
ways to lay out a system on the network and select the
layout most probable to meet the requirements. For
example, as shown in Section 6.1, some applications remain
interactive over a wireless network, whereas others cannot.
All such predictions can be performed without actually
building the remote visualization system.

In the remainder of the paper, we discuss related work in
Section 2. In Section 3, we describe our generalization of
caching in remote visualization using a model of incre-
mental updates. Our study of the overall problem space and
the framework to search for an optimal configuration is
presented in Sections 4 and 5, respectively. We present our
results in Section 6 and then conclude with a discussion of
future work in Section 7.

2 BACKGROUND

Over the years, the visualization community has explored
both algorithmic and architectural approaches to design
remote visualization systems.

In order to design visualization algorithms suitable for
use in remote settings, researchers have focused on low-
ering system latency by 1) reducing the amount of data
needed per request to a minimum using methods based on
view dependence, level of detail, and compression [6], [9],
[12], [13], [16], [17] or by 2) integrating the latest graphics
hardware into remote visualization systems [7], [8], [20].

Obviously, it would be ideal to have a remote visualiza-
tion algorithm with a minimal level of absolute latency.
When that is not feasible, however, smooth user interactions
might still be achievable using latency-hiding techniques,
mainly based on alternative representations of a visualiza-
tion. For instance, texture mapped geometry meshes can be
used to faithfully approximate volume rendered results
under a small range of viewing angles [2], [15]. Using such
approximations of the requested data while the data is still
being transmitted, user-perceived latency could sometimes
be negligible. However, if a user moves outside the targeted
range too soon, user-perceived visual quality would then
severely suffer. Indeed, latency hiding as an algorithmic

approach introduces a trade-off between user-perceived
visual quality and user-perceived latency.

Besides algorithmic approaches, general architectural
aspects of remote visualization are also important venues of
research. Of the several important issues to consider in
architectural design, we would like to focus on the use of
caching in general remote visualization systems. One
particular area of study is how optimal cache configurations
for all networked nodes in a remote visualization system
can be systematically evaluated and discovered.

Caching, as a general concept, has been widely applied
throughout computer science. We should then consider
previous methods designed to optimize cache configura-
tions for other notable applications, especially those used to
optimize processor cache [4], [10] and Web cache [11]. We
find optimizing caches for remote visualization different
from those two fields in several aspects. In particular, it
differs in the nature of the problem space, the goals of
optimization, and the resulting choice of the search method
for seeking an optimal solution.

To optimize a processor cache, the problem space is quite
uniform. All cache lines are of the same size and identified
by addresses of a constant length (for example, 32 bits). The
total number of possible cache configurations is also rather
limited (for instance, 4-way associative versus 8-way
associative, under a few candidate cache-line sizes). Since
hardware design does not allow dynamic variations,
runtime optimization was not part of the goal. For these
reasons, exhaustive search was employed to optimize
processor cache configurations [4], [10].

We also compare our problem to that of Web caching
[11]. The focus of Web caching is to create an affordable
“mirror,” or proxy, that provides fast access to frequently
used documents while keeping data secure and fresh (that
is, updated). Also, filtering may be used to further improve
performance, treating very large and very small documents
differently depending on the Web caching goals. A good
Web cache configuration is one that maximizes hit rate
while serving a large number of dynamic users. The size of
the problem space is not typically large. In terms of
optimization, previous researchers have attempted methods
such as linear programming, with an underlying assump-
tion of a linear problem space [11]. It is also uncommon for
a Web cache to adapt its configuration frequently (for
example, every five seconds).

Caching in remote visualization is unique when com-
pared to processor and Web caching. Remote visualization
caches are commonly designed to provide low latency
interactivity to one or just a few active users. Remote
visualization is data intensive and hence needs caches to
adapt to changing network bandwidth and user request
rates, etc. Exacerbating the problem is a need to manage
data fetches of highly varying sizes indexed by many
variables. The popular use of multiple networked nodes for
dispersed tasks further compounds the complexity. Also,
our problem space has no linear structures to leverage
(Section 4). As a result, we cannot directly apply optimiza-
tion methods of processor or Web caching.

Also worth noting is system configuration optimization in
distributed virtual reality [21] with data sets replicated on all
participating computers. The network is not the bottleneck
due to minimal runtime communication (transmitting only
control messages and highly compressed video streams). It is
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sufficient to solely optimize resource utilization on each

individual PC. The optimization space is often small enough

for using exhaustive search.
Finally, previous researchers have also dedicated much

pioneering work toward other architectural issues such as

advanced networking protocols, scalable infrastructure of

distributed systems, etc. [1], [3], [6]. To this end, our

methods herein extend along an orthogonal direction and

can be combined with existing architectural and algorithmic

designs to obtain an optimized system as a whole.

3 A MULTILAYER CACHING MODEL

Given the great diversity among applications of remote

visualization, we need a unifying model of caching for

remote visualization to systematically study optimization

methods for cache configurations. A robust software

infrastructure implementing the model is also required, so

actual experiments with different applications can be

conducted under a consistent framework. Accordingly, we

first describe our generalizing concept based on “incre-

mental,” then the overall configuration of a cache in remote

visualization. The general characteristics and optimization

of the problem space are reserved for Section 4.
In Fig. 1a, we illustrate a general setup of remote

visualization applications. By choosing different types of

connections between functional nodes, one could come to a

number of possible setups. For example, a popular instance

is shown in Fig. 1b, a cache node is colocated with the client

and the server with a wide-area network separating them.

The two cache nodes are referred to as Layer One ðL1Þ and

Layer Two ðL2Þ caches.

3.1 Incremental

To generalize requested information over different applica-
tions of remote visualization, we define an incremental as the
portion of data, be it intermediate or raw data, to be
delivered across the network to the client upon request. For
instance, in [2], [15], an incremental is composed of the
texture and geometry that are constructed for each new
view angle and depth range. Hence, it is both view-
dependent and depth-dependent. In [12], a volume ren-
dered image goes through wavelet compression before
being transmitted across a dedicated ATM link. The client
then receives the compressed image for each view as a new
incremental update. When extracting view-dependent iso-
surfaces, significant accelerations could be gained by
focusing computing resources on extracting triangles that
are appearing at each new view angle and/or new depth
[9], [13], [14]. In this case, incrementals consist of those
newly extracted triangles. Previous researchers have also
proposed to package compressed data on a coarse level of
granularity into larger groups, with each incremental
corresponding to a set of similar views [6]. To summarize,
applications of remote visualization, in general, pull
incrementals through a chain of network nodes (k levels
of cache) with each acting as a server.

In all cases, an incremental is identifiable by a compound
key of an arbitrary number of indices, each corresponding to
a parameter in a user request, for example, time step, view
angle, isovalue, level of detail, etc. A compound key can
then be encoded as a string by concatenating the name of
the data set with the list of indices. With keys represented as
strings, we can use classic string methods to conveniently
hash and manage incrementals of an arbitrary remote
visualization application. Moreover, prefetching and dele-
tion schemes can also be succinctly specified with efficient
and general string operations.

With the concept of incremental, it is then possible to
implement one common infrastructure to support caching
needs of various remote visualization applications.

3.2 Cache Configuration

In our model, each cache node is independently controlled.
Maximum size of a cache specifies the threshold before
deletion must take place. On all cache nodes, deletion is
performed using least recently used (LRU). The amount of
incrementals removed with each deletion is controlled by
an adjustable parameter.

Due to the large index space, we find it hard to organize
incrementals using multiway associative schemes like those
in processor cache. Instead, we feed the key and incre-
mental into a general hash function and maintain all
incrementals in a hash table. Similarly, while processor
caches usually prefetch in units of cache line, such a scheme
is too simple to be used in remote visualization. We instead
leverage the concept of neighborhood.

Suppose a data set named dn is indexed by m variables,

that is, var1; var2; . . . ; varm. The neighborhood, S, of an

incremental in with a key, Key, can be specified as
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Fig. 1. A general model of caches based on the concept of incremental.

(a) A conventional setup of remote visualization applications. (b) A

common instance of how a remote visualization application is laid out.



KeyðinÞ ¼ dn:var1:var2:: . . . varm:

SðinÞ ¼ fs : KeyðsÞ ¼ dn:var1 ��1:var2 ��2:: . . .

varm ��m:g

The �s define the size of the neighborhood around
incremental in. Since all prefetches are done in units of
neighborhood, we refer to those �’s as prefetch increments
(Pinc) with each Pinc controlling the range of an individual
dimension (that is, variable) of the data set. By setting
constrasting Pinc values for different dimensions, the flex-
ibility to prefetch more aggressively in a certain dimension is
offered. However, all incrementals in the same prefetch
neighborhood are treated with the same priority.

Here, we make a special note. In real-world scenarios,
deletion and prefetch policies would likely need to be
application specific. In this work, the deletion and prefetch
policies are independent of the framework. As long as such
policies can be procedurally described, our framework can
invariably leverage them. Our current deletion policy based
on LRU and prefetch policy based on neighborhoods are
intuitive to define and use. The observed results (Section 6)
seem reasonable with our selection.

4 THE PROBLEM SPACE

In an attempt to design an approach to cache optimization,
we study average fetch times and the overall cache
configuration space. In particular, we observe fetch times
resulting from configurations randomly selected in the
entire problem space. This is done to explore the possibility
of an analytical approach for finding good cache config-
urations. We show that this is a virtual impossibility and
discuss numerical minimization as an alternative.

4.1 The Target Function: F ðX1; . . . ; XkÞ
The specific aim of this work is to design a systematic
approach to discover efficient (optimal or at least close to
optimal) configurations of multilayer caches in a remote
visualization system.

Due to the dynamic nature of human interaction on the
client side, we can only take averages of fetch time, F , over
a number of user requests and minimize that. The great
variety of visualization applications also dictates such
optimization be done in a case-by-case manner.

The input of F consists of Xjs, with each X composed of
the entire set of configuration parameters for one of the
k caches. Hence, we have F ðX1; . . . ; XkÞ as the target
function, where the lower the function value the better. In
addition, as network traffic varies during a period of time,
for example, different hours during a workday, the value of
F ðX1; . . . ; XkÞ would vary as well. The minimization
process of F ðX1; . . . ; XkÞ would then need to be redone.
Fortunately, as we will show in Section 6, this process
completes with subsecond efficiency. Thus, although
F ðX1; . . . ; XkÞ is time dependent, we do not need to include
time as an input of F for the purpose of optimization.

4.2 Configuration Space

Supported by inCache (Section 5) and using the layout
illustrated in Fig. 1b, we tested three applications: dynamic
streamings of 1) compressed images volume rendered for
different view angles, 2) isosurfaces for a set of isovalues

and time steps, and 3) streamlines for interactively specified
seed locations (in both spatial and temporal coordinates).

Each level of cache, L1 or L2, is controlled by an
independent set of configuration parameters: cache size
defined in number of bytes and sizes of deletion and
prefetch (both defined in number of incrementals). Here, we
use the same prefetch size on all indices of the data set, that
is, treating all indices with the same priority. Thus, instead
of keeping multiple prefetch sizes, �s, we just maintain one
universal � value. Therefore, with two levels of caches, L1

and L2, there are a total of six configuration parameters
(three for each cache). Note, however, the Pinc parameters
are treated individually in actual optimizations.

The six-dimensional (6D) configuration space is over-
whelming to exhaustively search. Since we just need a
qualitative sense of the overall configuration space, we start
by randomly selecting 200 cache configurations, out of the
6D space, for each application. The cache sizes were
distributed within the range from 213 ¼ 8 Kbytes to 227 ¼
128 Mbytes to match real-world scenarios. Deletions were
chosen as a number of incrementals representing a random
percentage of cache size. The Pinc values were picked as
random numbers between 0 and 6, since anything larger
would cause prefetching to become too costly. With each
configuration, we run a scripted sequence of 60 random
user requests. There is a one-second pause after a set
number of requests have been answered to “mimic” a
repeatable set of user interactions. The pause occurs after 3,
1, and 30 requests for applications 1, 2, and 3, respectively.

Following an initial start-up cost, efficiency with the
subsequent requests should reflect caching performance.
Using the recorded times of the last 55 requests, we analyze
1) the effects of cache misses on the wall-clock time, 2) the
distributions of average fetch time, and 3) “good” config-
urations in the configuration space. Interestingly, all three
applications produced similar results. The results from
application 1 follow.

In Fig. 2, we plot the wall-clock times when each of the
last 55 requests was fulfilled. Each curve in Fig. 2
corresponds to a different configuration. To remove visual
cluttering, we show only approximately 25 percent of all
curves. Cache hits and misses are apparent from observing
the stair-stepping effects in the figure with each miss
showing a noticeable shift in the graph. A lower overall
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slope corresponds to better configurations. This qualitative

characteristic is present with all three applications.
We also construct a histogram of average fetch time to

show the corresponding distribution. The histogram shown

in Fig. 3 has the horizontal axis, the time, organized in

logarithmic scale. In other words, the bins are exponentially

sized. As shown, the average fetch times span across four

orders of magnitude with the first containing the best
11 percent.

After seeing histograms similar to the one in Fig. 3 for
each application, we are convinced that finding a good (not
even optimal) configuration is significant. A random cache
configuration or one manually chosen or “twiddled” will
not guarantee efficiency, whereas a systematic way of
searching for such a configuration is desirable.

To design a proper search method, a qualitative under-
standing of the overall problem space would be very
helpful. We developed the x-y plots of the top 10 percent
versus bottom 50 percent of configurations in Fig. 4 to show,
for instance, the correlation between the sizes of L1 versus
L2 caches.

Some well-known patterns can be observed such as
L1 cache should not prefetch more than L2 cache. L1 and L2

should not be approximately the same size and either needs to
be large but not both. Aside from those, there appears to be
little commonalities present in all “good” configurations,
which are also highly dispersed throughout the entire
configuration space.

To rule out the possibility of some higher order relation-
ship among the parameters in “good” configurations, we
resorted to Principal Component Analysis (PCA), as well as
nonlinear decision-tree classification. With PCA-analysis,
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Fig. 3. Histogram distribution of average fetch time (in logarithmic scale),

recorded from 200 random L1-L2 configurations of distributed caches,

recorded when streaming a database of volume rendered images of a

time-varying simulation data set.

Fig. 4. A qualitative view of configuration parameter space distribution, using x-y plots of the top 10 percent versus the bottom 50 percent

configurations, in the application that dynamically streams compressed volume rendered images.



we found four out of six significant eigenvectors in the
eigenspace, that is, the 6D space can be reduced to a four-
dimensional space, preserving 90 percent of variability
among the data points. Although this reduction is helpful,
the actual problem space is even larger due to multiple �s
to handle. Hence, the dimension reduction still generates a
rather complicated space. With decision-tree classification,
we resorted to the mature body of work [19] used in data
mining. The precision of determining whether a configura-
tion is good consistently ranks below 70 percent with a
sensitivity as low as 39 percent. In short, we could not find
any reliable structures in the space of configuration
parameters distinguishing good from bad.

4.3 Numerical Minimization

Not knowing the analytical form of F ðX1; . . . ; XkÞ, we
cannot solve for extremal points in the N-dimensional
domain. Given the immersed nature of good and bad
solutions (Fig. 4), we decided to use numerical minimiza-
tion as a heuristic to iteratively search for a better setting.

By abstracting all cache parameters from all levels of cache
as anN-dimensional vector, our target functionF ðX1; . . . ; XkÞ
becomes f : RN ! R. Supposing n is the total number of
parameters to configure a cache, and k is the number of levels
of cache, then N is equal to n� k. We used two alternative
procedural numerical minimization algorithms: the gradient-
based 1) Steepest Descent and 2) Conjugate Gradient.

Although Steepest Descent is the most straightforward
method of numerical minimization, Conjugate Gradient is
more theoretically sophisticated and may yield better
results. As we will show in Section 6, between the two
methods, one does not always outperform the other. It is of
particular value to use both methods at runtime and return
the best configuration for more robustness.

We implemented both methods, using finite differences to
approximate gradient. Specifically, we modify one of the
N parameters while fixing all the other N � 1 parameters.
Since there are two possible directions of variation with each
of theN parameters, a reliable estimation of gradient requires
2N measurements of fetch time. Such an OðNÞ complexity
caused experiments to take hours to complete and prompted
a need for simulation-based optimization. A calculation of the
Hessian of this function would cost OðN2Þmeasurements of
fetch time, rendering Newton’s Method and many of its
variations prohibitively expensive for this problem.

The direction of Steepest Descent is simply the negative
of the gradient. Conjugate Gradient calculates a different
direction, based on the gradient, which, in practice, tends to
more accurately reflect the actual minimum. The first
iteration of Conjugate Gradient is equivalent to Steepest
Descent. Typically, for Conjugate Gradient, a step size
search is required, but because of the inherent discrete
nature of our problem, it is not needed for our calculations.
Also, many linesearch algorithms require additional gra-
dient calculations; even the simplest of these at least
requires extra function evaluations [5]. Additionally, Con-
jugate Gradient is known to sometimes give bad directions,
so an occasional restart is needed. We implemented the
Polak-Ribiere version of Conjugate Gradient [18], which has
an elegant fix of this shortcoming.

The optimization (numerical minimization) is performed
independently when an application is started. We begin
with an initial configuration and measure fetch times either
through actual experiments (Section 5.3.1) or via simulation
(Section 5.3.2). We then use these measurements to
determine the direction of minimization.

Note that we use numerical minimization merely as a
heuristic search for a better solution. Ideally, we would
prefer to find a global minimum but doing so is generally
difficult and time consuming. Incoming user requests,
network instability, and variable sized blocks of data are
inherent in all remote visualization systems. Consequently,
there is a small likelihood of a globally optimal solution
remaining optimal for long enough to justify finding one.
Therefore, we opt for finding any better solution in a short
amount of time, that is, within one second.

The properties of f , which numerical optimization
routines require, are used to bound approximations and
guarantee convergence. However, our criterion for conver-
gence is simply whether the next configuration yields a
slower fetch time. We continue as long as the fetch time is
faster than the previous iteration. Indeed, we find that the
direction returned by either the Steepest Descent or Con-
jugate Gradient, and a move from one cache configuration to
another in that direction generally reduces our average fetch
time. Finally, we recognize that we have hardly tried all
possible methods of numerical minimization. More sophis-
ticated algorithms could potentially lead to better numerical
performance. As we will show in the Results section, our
overall framework is already effective without utilizing more
complicated methods.

5 THE INCACHE SYSTEM AND OPTIMIZATION

5.1 The inCache Infrastructure

5.1.1 Design Concepts

While designing inCache, we hoped to develop a sufficient
infrastructure for investigating the problem of multilevel
cache optimization and at the same time have the resulting
package be of value for practical use.

Each cache would hold all incrementals in a contiguous
repository, indexed through a hash table. In the meantime, a
separate priority queue is used to maintain the LRU order
of all incrementals. Accordingly, the priority queue is keyed
on the last time each incremental is accessed. All reads/
writes in the hash table take Oð1Þ time, while inserting/
deleting an incremental from the heap takes OðlogMÞ,
where M is the total number of incrementals in a cache.

Another issue that inCache handles is the need to
frequently change how a cache is configured. With each
inCache being an independent process running on a
networked node, there are three interfaces to reconfigure
inCache: 1) manual input through the inCache process’
console prompt, 2) periodic update from a textual config-
uration file on local disk (a mutable option), or 3) dynamic
alteration through a socket. When an inCache process is
directed to reduce its size, it deletes present incrementals in
LRU order until the request is met. However, when a larger
size is given, the inCache process will cap that value by the
size of its main memory.
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5.1.2 The inCache Nodes

Our overall architecture follows the illustration of Fig. 1a.
The inCache package solely provides the functionality of
multilevel caching. Server and client are the responsibility
of application developers.

Every inCache node runs an independent process, acting
both as a producer and a consumer. 1) As a consumer, it
takes in data by prefetching neighborhoods of incrementals
from a lower-level cache or directly from the server. Since
all incrementals are identified by string-type keys, an
inCache process makes no distinction among data sets or
applications. 2) As a producer, an inCache process answers
requests from higher level caches or the client. If it does not
hold, the requested incremental, that is, a cache miss, it
makes a prefetch request to a lower-level cache and waits
for the prefetch to arrive before answering the original
request. This chain of requests ends at the remote server,
where all requests result in a hit. As a request travels from a
client to a remote server, each level of cache usually receives
and holds a larger subset of the data, as illustrated in
Fig. 1b, with an increasing number of triangles beside each
inCache node.

All connections to inCache processes are through sockets.
If the targeted inCache process actually runs on the same host
as the consumer process, then the communication goes
through a very low overhead socket loopback. When that is
not the case, data transmission is then in TCP/Internet
Protocol (IP). The user can benefit from this design by
choosing the best node layout for a specific network, chaining
additional nodes until the final data server is connected.

A final consideration is to transmit requests and data as
quickly as possible, so separate threads within each inCache
process are used to handle incoming incremental requests
from its client and incoming incremental data from its
server. Thread control and mutex locks became the most
demanding task to achieve robustness, as well as efficiency
during inCache development. However, using threads
enabled us to handle multiple clients per node, and hence,
several different users may simultaneously access the
inCache system. In this respect, every inCache node works
very much like a Web server.

5.1.3 The External Interface

Although the intrinsics of the inCache infrastructure are
rather involved, it is sufficient for application developers or
users to deal solely with a compact external interface, as
shown in Table 1, where the functions are grouped into

client API and server API. The locations of the two APIs in
the software architecture is also illustrated in Fig. 1a. The
underlying operations within an entire group of inCache
nodes, including prefetch and cache deletion, etc., are
transparent to users.

To chain inCache nodes, a client can connect to its
producer cache node through a given socket’s address by
the connect_cache() function. With the established connec-
tion, a client makes an incremental request with client_re-
trieve() and waits for the data to be returned. The producer
inCache node will then immediately reply with the data on
a hit or translate the request into a prefetch and send it to
the next linked node on a miss.

The lower node could be another cache or the actual data
server. The server will respond to this request by retrieving
the incremental lookup information via get_lookupinfo()
and then determining the availability of the data. Once the
data is ready, the server can insert the information back into
the inCache node with server_insert() or, if the lookup
returns no match, the server will respond with an invalid
incremental message with server_invalid_request(). The
client_reconfig() function allows the consumer client to
configure any number of layers by specifying the config-
urations in a chain of strings that propagate down.

5.2 Testing Framework

To comprehensively study the performance aspects of
inCache, we have designed the following testing frame-
work. We have tested inCache with multiple applications
under a variety of network environments.

5.2.1 Network Layout

For our model (Fig. 1a), remote streaming using a client, a
server, and L1 and L2 caches is the most practical. The
standard components of any remote system, a server and a
client, represent the end layers. The server acts as the
compute layer responsible for the storage of and the access
to precomputed visualization data. The middle layers
consist of L1 and L2 caches joining the server and client.
In all tests, we use the standard Internet as the wide-area
network. Fig. 5 illustrates the typical bandwidths we
obtained for varying network message sizes. Noting that
our framework is independent of the type of network used,
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TABLE 1
The inCache Interface

Fig. 5. Wide Area Network (WAN) bandwidth measured for different

message sizes.



better system performance could be possible if quality of
service is employed.

A cluster located at North Carolina State University
(NCSU) was used for the server machine, which transferred
data to the client located at the University of Tennessee.
Experimental tests were also conducted with the remote
server running on a workstation at the Ohio State
University (OSU), but due to having nearly identical
network bandwidth, the tests results were very similar.
Hence, herein, we only show results obtained using the
NCSU cluster as the server.

In total, we evaluated four different network layouts. In
the first two layouts, the client resides on a 100 megabits per
second (Mbps) Ethernet local area network (LAN), whereas
in the last two layouts, the client is accessed via Internet
over an 11 Mbps wireless LAN. In all cases, the WAN
separates the client from the server.

. Layout 1 has L1 on the same ethernet LAN as the
client and L2 on the same LAN as the server, but not
on the same machines. L1 and L2 handle all network
transmission on the WAN connection.

. Layout 2 places both L1 and L2 caches on the client
side (that is, no cache on the server side). L1 is on the
same machine as the client. L2 cache on the same
ethernet LAN as the client. L2 and the server handle
all communication across the WAN. This layout was
shown to be useful in [6].

. Layout 3 is similar to Layout 1 with a wireless
network replacing the ethernet LAN on client side.
The WAN connection remains unchanged.

. Layout 4 is similar to Layout 2 with a wireless
network replacing the ethernet LAN on client side.
The WAN connection remains unchanged.

5.2.2 Modeling User Requests

Suppose there are m indices in a data set, with each index in
the compound key being Keyj. We assume that a user
would modify any given compound key in consecutive
steps by issuing a new request with each modification. We
further assume that an average user will take one step of
unit size in a randomly chosen direction, j. Accordingly,
our random step generator begins with an initial Key and
randomly picks one of the m indices, Keyj, to increment or
decrement (with an equal probability) by a unit step.

Using such a procedural user model, we can conveni-
ently control the user behavior by setting a different rate of
user input. Between experiments, we can use the same
random sequence of user requests to measure differences in
fetch time in a controlled manner.

If a user is more likely to change a parameter than other
parameters, we can model this behavior by setting different
probabilities for each Keyj to be chosen for next move. As
an example, if a user engages in browsing a hierarchically
organized data at a low level of detail (LoD), user requests
can be generated with a fixed LoD index, whereas all other
indices are freely variable.

The inCache system treats all requests the same. Over a
sequence of user inputs, it is for the minimization code to
discover that, for example, an index like time should incur
larger prefetch (high Pinc value) or an index such as LoD

should have a Pinc value of 0. In this way, specific
application requirements are implicitly handled.

5.2.3 Testing Applications

In our tests, the visualization results to be streamed across
the network have been precomputed. This is reasonable for
the scope of this paper, because the time to compute an
incremental on the fly could be treated as a part of the
general network latency. The same inCache model still
applies. Our tests include four applications, chosen to
reflect incrementals of constant versus varying and small
versus large sizes and different types of compound keys.

. Application 1 streams a set of streamlines of equal
length, computed from the well-known tornado data
set. There are 463 separate streamlines with each
being 2.4 Kbytes in size, indexed by the coordinate of
the seed of each streamline. The client request rate is
30 requests/sec.

. Application 2 involves a database of volume
rendered images of a 30 time-step simulation data.
The images are 512 � 512 in resolution, indexed by
time step and two spherical coordinates (72 � 60)
describing the view angle. With Z-lib compression,
image sizes average 85 Kbytes, ranging from
70 Kbytes to 110 Kbytes. The simulated client makes
3 requests/second.

. Applications 3 and 4 deal with a set of isosurfaces
extracted at 11 different isovalues from a 99 time-step
volume data set. After lossless compression using Z-
lib, the sizes of the compressed meshes vary widely
between 0.5 Mbyte and 3.8 Mbytes. Applications 3 and
4 are tested at 1 request/sec and 3 requests/second,
respectively. User varies the time index over isovalue
with a 2-to-1 probability.

5.3 Optimizing inCache

5.3.1 Optimizing Fetch Time by Experiments

By experimenting with real-world applications in real-
world scenarios, we tried to verify the effectiveness of
numerical minimization. An initial cache configuration is
chosen when each application is started. We then rely on
either Steepest Descent or Conjugate Gradient to determine
how to vary the configuration in the next iteration.

We note here that different types of cache configuration
parameters may have drastically different scales. For
instance, cache size could range from Kbytes to Gbytes,
whereas Pinc (size of prefetch) of each index used by the
data set may only be of small values like 1, 2, 3, etc. Hence,
when Steepest Descent and Conjugate Gradient try to
evaluate various gradients, we have to use step sizes
empirically determined for each parameter in considera-
tion. For instance, the step size for “cache size” is always
10 percent of the previous size. Deletion size is given in
terms of the number of incrementals. The step size of
deletion is also a percentage of the maximum number of
incrementals the current configuration could contain.

Although deciding the initial configuration, we do have
one condition to always meet. That is the initial cache size
must be large enough to hold at least one half of the entire
prefetch neighborhood for that cache. We also do not allow
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Pinc values to go beyond 6. Typically, remote visualization

data set s are indexed by multiple (more than 3) indices, and

with Pinc ¼ 6 the neighborhood for prefetch is already

exponentially sized.
As we will show in Section 6, both methods of numerical

minimization worked well in finding good cache config-

urations. However, their shortcomings are also significant.

In either, before taking the next step, one needs to make a

large number of trial configurations, each with an orthogo-

nal change from the current one. Under a configuration to

obtain a reliable measure of average fetch time, we run

through a randomly generated sequence of user move-

ments. Even when only dealing with 10 parameters

ðN ¼ 10Þ, for instance, Steepest Descent may require hours

to just take one step in the experiment. An optimization

experiment could take more than a day to finish.
To resolve this bottleneck, we have developed a highly

efficient simulation-based approach to carry out the

optimization. This approach allows an optimization to be

computed within a second of time using just one CPU.

5.3.2 Optimizing Fetch Time by Simulation

To address the experimental bottleneck, we provide a

simulation of the inCache infrastructure that calculates fetch

times based on average network measurements.
We start by collecting transfer times, or bandwidth, over

the wide-area network for a range of message sizes. This test is

run on every link on our targeted network connection. The

measured network bandwidths can then be plotted as a

function of message size for each link. We found that the

wide-area network demonstrates stable performance over a

reasonable time span.
When a configuration is chosen, the same random

sequence of user movements is considered, with the overall

operation of the inCache system simulated. The fetch time

of each network message, however, is obtained simply by

linear interpolation according to message sizes from the

model obtained above. The final fetch times used by

numerical minimization are still computed as an average

over the entire sequence of user movements. This way, the

most time consuming step during the optimization process

is replaced by efficient computations.
The shortcoming of our approach stems from the

difficulty of handling fluctuating networks and quickly

changing rates of user movements. Fortunately, because of

the speed of the simulation, it is reasonable to rerun the

optimization at any time and reconfigure the cache

configurations at runtime. Also, the simulation takes as

input the estimated amount of time between user requests,

which also allows for a rerun and reconfigure. The results of

this simulation (provided in Section 6) are quite similar to
those of the experiments.

6 RESULTS AND DISCUSSIONS

6.1 Evaluation of Optimized Performance

Since our main approach is to minimize average fetch time,
let us first evaluate the resulting performance after
optimization. In Table 2, we list the request rates and
average fetch sizes for Applications 1 through 4. It is
important to note that different settings of prefetch would
cause a different amount of network traffic between L1 and
L2, and L2 and the server. Here, we are solely concerned
with the link between L1 cache and the client, where there is
always only one incremental returned for each request.

As described in Sections 5.3.1 and 5.3.2, there is not a
clear winner between the two alternative methods of
numerical minimization, Steepest Descent and Conjugate
Gradient. However, since the simulation consistently com-
pletes with subsecond efficiency, we can always afford to
run both methods and choose the better convergence result.
We then set up an actual experiment using the resulting
configuration and record the average fetch time by running
through the scripted sequence of user movements. From
that, we compute the rate at which requests are fulfilled.
Note that this shows the performance perceived by the
client. Several interesting features can be observed in Fig. 6,
a graphical plot of this result.

First, intuitively, the more data requested per second by
the client, the slower the requests can be answered. The
curves essentially depict the lower bound of achievable
latencies for each network layout with the given combina-
tion of fetch size and user request rate, that is, the lower
bounds are specific to the pattern of data movement. From a
lower bound, we can tell whether an algorithm is appro-
priate in a scenario. In the scenarios in Fig. 6, Layout 1 likely
supports interactivity for all four test applications.

Second, Layouts 1 and 2 performed considerably better
when the rate of data requests are on the order of several
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TABLE 2
Request Rates by the Client per Second

Fig. 6. Evaluation of performance after optimization. The horizontal axis
is the rate at which the client requests data (in kilobyte per second),
whereas the vertical axis shows the corresponding actual rates at which
the system can fulfill client requests (in number of requests per second).
On each curve (for each layout), from left to right, are Applications 1
through 4.



hundred Kbytes/sec or lower. However, when the rate of
data requests go up to 1.8 Mbytes/sec, only Layout 1
maintained better performance. This difference among
layouts almost completely diminishes when data is re-
quested at 5.4 Mbytes/sec. We can thus deduce that having
two caching nodes residing on opposite ends of the slowest
link of the network would be most helpful to remove the
performance bottleneck. For instance, in Layout 1, the
slowest link is the WAN between L1 and L2 caches, whereas
the LAN connections on either the server or the client side
are not the bottleneck. Of course, when the data requests go
up to 5.4 Mbytes/sec, even the LAN connections start to get
congested.

For the applications tested, the wireless network only
delivered about half of the performance that LAN environ-
ments did. This is probably because wireless networks are
more easily saturated. However, after data request increases
so much that all links become saturated, the impacts caused
by differences among ethernet LAN, wireless, and WAN
are then minor.

Layouts 3 and 4 are also different, yet they have similar
results in nearly every application. With Layout 3, the cost
of using the slower wireless network must be paid for every
request, including hits, since the L1 cache is located across
the LAN. However, Layout 4 has L1 directly on the client
with near instant hits on L1, but a higher cost of misses and
network transfer for prefetch requests made by L1. As
discovered by our optimizer, neither trade-off seems to
provide a better layout since the lower bounds of fetch time
are nearly the same.

On one hand, an interactive application must at least
maintain 10-15 frames/second according to current stan-
dards. In this context, we find Layouts 1 and 2 sufficient for
all four applications to be interactive as long as the client
needs less than 500 Kbytes/second of data. On the other
hand, some ingenious remote visualization algorithms
might only need a new update every 2 second, for instance.
Then, with sufficient caching, even the wireless network
supports interactive remote visualization, as long as data
requests are slower than 5.4 Mbytes/second. Note, in Fig. 6,
even the lowest data point corresponds to an ability to fulfill
one request every 2 seconds. From similar analyses, a
guidance of which network layout to choose or what
algorithm to use can be obtained.

The applications we tested represent a generic spectrum
of common visualization applications. To set up the testing
framework, very little work was needed. We finished
developing each application within a couple of days due
to the simplistic API of the inCache infrastructure. It should
be relatively easy for other mature visualization applica-
tions to adopt our approach.

We realize it is hard to prove that our approach actually
finds the optimum. However, since the performance results
are quite close to what a dynamic application can obtain
from today’s network infrastructure, we deem the resulting
performance to be close to optimal.

6.2 General Observations

In total, because of the two minimization methods, both in
experiments and simulation, and in all the 16 combinations
of network layout and testing applications, we already have

64 different scenarios without counting additional test runs
to cross-check experiments versus simulation. Due to space
limits, we cannot include detailed configuration results of
the optimization process for all the tests. We have compiled
that information as a supplemental material to this paper.

In this section, we discuss some general findings that we
made by analyzing the cache configurations resulting from
optimization. These findings are unexpected and may be
specific to various scenarios (that is, the combination of
application and system settings). We present these findings
to demonstrate the advantages of runtime optimization
from perspectives different from those in Section 6.1.

Let us also briefly describe typical parameter values
observed during optimization as a basis of reference for
phrases like “small prefetch” or “midrange cache size.” Our
applications are data intensive. It is quite common for at
least one of the Pinc dimensions to be zeroed out during
optimization. We consider a small prefetch to be Pinc < 2.
Pinc > 4 almost always leads to inferior fetch times. In
Table 3, we collected the minimum, maximum, and average
cache sizes (without distinguishing L1 and L2), after
optimization via experiment and simulation, for each
application. Obviously, midrange cache size is application
dependent by nature.

6.2.1 Impacts of User Interaction Rate

The user request rate is probably more important than
previously anticipated. Due considerations must be given to
the targeted user request rates to design algorithms and
systems with real-world applicability.

If, when prefetch is costly, the user does not leave sufficient
time between requests to allow for prefetch, prefetching could
quickly become a burden. For instance, in Application 1, at
30 requests/sec, the optimized cache configurations use
minimal cache prefetching, even when each incremental is
of a mere 2.4 Kbytes. With Application 4, a lower request rate
(3 requests/sec) is used, and each of its incrementals takes
about 0.1 sec to transfer across the WAN. A medium Pinc
value of four for each of the two indices would cause ð2� 4þ
1Þ2 ¼ 81 incrementals to be prefetched together. Then,
prefetch becomes a wasteful “postfetch.”

Similarly, unless slow rates of data requests are used, the
system benefits less from prefetching across the WAN than
across a LAN (that is, high versus low prefetch costs).
Often, the L2 cache, when close to the server node, can take
advantage of some prefetching to improve L1 misses. Such
behavior is consistently reproducible in both experiment
and simulation. This finding justifies the superiority of
latency hiding algorithms. By separating user interaction
rates from rates of data requests, a slower rate of data
requests is possible and leads to better performance.
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Applications 3 and 4 serve as latency hiding examples.
When a surface mesh is requested at 3 requests/sec
(Application 4), high fetch times are shown to occur. Since
mesh rendering is fully interactive by itself, we slow to
1 request/sec in Application 3. Fetch times were reduced
dramatically because the cache was able to utilize the “idle
time” for more prefetch on both L1 and L2. In contrast, the
optimizer used very small prefetch in Application 4 to
compensate for the higher request rate.

6.2.2 Impacts of Network Speeds and Incremental Sizes

Network speeds have the expected effect on fetch times,
that is, the lower the network bandwidth the longer the
fetch times. Similarly, larger incremental sizes result in
longer fetch times. For data sets with uniform incremental
sizes, cache optimizations are more consistent and pre-
dictable. However, we discovered with Applications 3 and
4, whose incremental (isosurface) sizes vary significantly for
different isovalues, that fetch times can widely vary
depending on which incremental is under request. A small
change in Key value can lead to a substantial jump in
resulting fetch time. This makes optimization difficult. One
way to overcome the problem is to continuously optimize
inCache as the user interacts with the visualization. This is
why we have used the sequence-based user model.

Also, a portable client placed on a wireless device benefits
from the inCache system. The greatest increase in perfor-
mance occurred when the clients were able to access a large
portion of data on a local network, that is, when both L1 and
L2 cache nodes appeared on the same LAN as the client. L2

acted as a larger storage unit, allowing even L1 cache misses
to incur a small penalty.

6.3 Experiments versus Simulation

Here, we present plots of the resulting average fetch time,
measured in different cases to demonstrate the intrinsics of
the optimization process. Together, these plots are a
summary of the supplemental material of this paper.

Each graph in Figs. 8 and 9 represents one application
over the four different layouts (Layouts 1-4). For each, we
compare two optimization methods and experiment versus
simulation. For each application, the same initial cache
configuration is used.

For some tests, there is such a large range of initial fetch
times and resulting optimized times that the maximum
fetch time value allowed for the y-axis had to be capped to
produce sensible plots. In that case, all values above the
maximum range of the graph are shown in print on the
graphs. With every combination of testing application and
network layout, results from both the actual experiments
and different methods of simulation are shown. Specifically,
the legend is organized in Fig. 7 with the graphs shown in
Figs. 8 and 9.

Our simulation calculates fetch times based on measured
network bandwidth, greatly accelerating the process. For
instance, both an hour long streamline experiment and a
two hour long vortex experiment can be simulated in
seconds. A four hour long isosurface test is simulated even
faster because there are only two Pinc dimensions for
isosurfaces, even though isosurfaces are much larger and
more expensive to actually transfer. In all tests, simulation
and experiment results are compared.
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Fig. 7. The legend for Figs. 8 and 9.

Fig. 8. Latencies measured in Applications 1 (a) and 2 (b).



Although we have tested and found high stability on all
the nonwireless networks we use (WAN and LAN), our
simulation runs are likely biased. Nevertheless, as seen in
the four graphs of all runs, even though the optimized
configurations from simulation and experiments differ, the
resulting fetch times are similar. However, the similarity is
greatly affected by network instability and varying incre-
mental sizes, as in Application 3. We ran the inCache
system under all of the suggested outputs and the resulting
fetch times were near the estimates and, therefore, near the
fetch times of the experimental runs. Unfortunately, the
effect of network-related noise becomes quite apparent
whenever a network layout includes a wireless network,
which is notoriously sporadic. With the wireless network,
our optimizer was still able to obtain a performance
corresponding to roughly half of tat delivered by nonwire-
less network.

6.4 Sensitivity to Initial Configuration

Due to space limits, we cannot provide in this paper a
comprehensive sensitivity study of all the 64 testing
scenarios in Figs. 8 and 9. However, we believe our
framework is reasonably insensitive to how initial config-
urations are seeded.

First, we chose the worst 10 configurations from the
same set of 200 configurations tested in Section 4.2. The
latencies recorded in those 10 configurations range from 36
to 53 seconds/request. All 10 configurations typically
employ very large prefetch sizes. We optimize those
configurations by simulation, using both Steepest Descent
and Conjugate Gradient as the minimizer. By choosing the
better result from the two minimizers, the optimized
latency falls in the range of [0.8, 4.2] sec/request with the
mean being 2.6 sec/request. Although we did not achieve
as good of a result as in Section 6.1, we still obtained
substantial improvements.

Second, for tests in Figs. 8 and 9, each application starts
from the same initial configuration, and in all cases,
consistent performance gains have been obtained after
convergence. Since too much prefetch may very well be
harmful, it may be practical to always start from initial

configurations like the ones we used, where a small
prefetch (for example, Pinc ¼ 1) is coupled with a mid-
range cache size. Another practical strategy is to leverage
the efficiency of our simulation. One can always start from a
handful of reasonable initial conditions and choose the best
among all the converged results like how quicksort uses
median of three to choose pivot.

7 CONCLUSION AND FUTURE WORK

In this work, we focused on optimizing caching and
prefetching in remote visualization systems. By way of
real-world experiment and computer simulation, we have
developed an approach, as well as an infrastructure, to seek
close to optimal cache configurations maximizing network
utilization. We envision several ways that our work could
be leveraged. A developer can gauge whether a certain user
requirement is realistic by the use of our simulation
modules. An administrator can use our approach to
determine more optimized layout for a system and also
dynamically reconfigure cache nodes on the fly to maintain
high performance.

In the future, we would like to develop a more
comprehensive sensitivity analysis in a separate work. In
addition, we intend to evaluate other optimization techni-
ques. We also hope to explore using real user movement
sequences captured from actual inputs by human subjects
to better validate our approach.
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