
ECE 190 Lecture 05 February 1, 2011 

 1 V. Kindratenko 

Control structures in C 

Lecture Topics 
 Conditional constructs 

 Iterative constructs 

 Examples 

 Style 

Lecture materials 
Textbook § 13.3-13.5 

Homework 
None 

 

Machine problem 
MP1.1 due February 2 at 5pm submitted electronically 

MP1.2 due February 17 at 5pm submitted electronically 

 

 

  



ECE 190 Lecture 05 February 1, 2011 

 2 V. Kindratenko 

Conditional constructs 
 In C, conditional constructs can be implemented using if, if-else, or switch statements 

 In the last lecture we covered if and if-else constructs; we will now look at the switch statement 

switch statement 
 consider example shown in the left column; it also can be implemented as shown on the right: 

Using cascaded if-else statements Using switch statement 
if (expression == const1) 

    action1; 

else if (expression == const2) 

    action2; 

else if (expression == const3) 

    action3; 

... 

else 

    actionN; 

 

switch (expression) { 

    case const1: 

        action1; 

        break; 

    case const2: 

        action2; 

        break; 

    case const3: 

        action3; 

        break; 

... 

    default:  

        actionN; 

} 

 

 this only works when we consider some discrete values to which expression is evaluated, 

const1, const2, … 

action 1 const1 
true 

evaluate 

expression 

action 2 const2 

true 

action N 

. . . 

false 

false 



ECE 190 Lecture 05 February 1, 2011 

 3 V. Kindratenko 

Iterative constructs 
 Iterative construct means that some statements will be executed multiple times until some 

condition is met: 

 

 Such construct implements a loop structure in which action is executed multiple times, as long 

as some condition is true 

o action is also called loop body 

 In C, iterative constructs can be implemented using while, do-while, or for loop statements 

while and do-while statements 
 while (condition) { 

    subtask; 

} 

 do { 

    subtask 

} while (condition); 

 For while loop, loop body may or may not be executed even once 

 For do-while loop, loop body will be executed at least once 

 

 Examples 

action 

condition 

true 

false 

subtask 

condition 

true 

false subtask 

condition 
true 

fals

e 



ECE 190 Lecture 05 February 1, 2011 

 4 V. Kindratenko 

while do-while 
x = 0; 

while (x < 10) { 

    printf(“x=%d\n”, x); 

    x = x + 1; 

} 

x = 0;  

do { 

    printf(“x=%d\n”, x); 

    x = x + 1; 

while (x < 10); 

 

for statement 
 for (init; test; reinit) { 

    subtask; 

} 

 

 Example 

while for 
x = 0; 

while (x < 10) { 

    printf(“x=%d\n”, x); 

    x = x + 1; 

} 

for (x = 0; x < 10; x++) 

    printf(“x=%d\n”, x); 

 

break and continue 
 break will cause the loop to be terminated 

 continue will cause to skip the rest of code in the loop and start executing next loop iteration 

subtask 

condition 

true 

false 

init 

reinit 



ECE 190 Lecture 05 February 1, 2011 

 5 V. Kindratenko 

Examples 

Simple calculator 

 Problem statement: write a program that lets user enter a simple expression consisting of two 

operands and one operation, e.g., ‘2 + 3’, performs the entered calculation, and prints the 

result. 

 Using systematic decomposition, we first derive a flowchart that shows all the main steps in the 

program that need to be implemented 

o Get input (using scanf) 

o Recognize which operation is to be implemented (using switch construct) 

o Output results (using printf) 

 

/* simple calculator 

    Input: an expression to be evaluated, for example, 4 / 6 

    Output: value to which the expression evaluates,  

            or an error message if the operation is not supported 

 */ 
 

#include <stdio.h>       /* needed for printf and scanf */ 

 

int main() 

{ 

    int operand1, operand2;    /* two operands */ 

    char operation;            /* operation to be performed */  

    int result;               /* result of the operation */  

  

start 

stop 

Get input 

Output 

result 

Compute 

solution 

res=op1 + op2 operation + 
true 

res=op1 - op2 operation - 
true 

print error message 

. . . 

false 

false 

 

. . . 



ECE 190 Lecture 05 February 1, 2011 

 6 V. Kindratenko 

 

    /* get input */ 

    printf(“Enter expression operand1 operation operand 2: ”); 

    scanf(“%d %c %d”, &operand1, &operation, &operand2); 

 

    /* calculate expression */ 

    switch (operation)  

    { 

        case „+„:  result = operand1 + operand2; break; 

        case „-„:  result = operand1 - operand2; break; 

        case „/„:  result = operand1 / operand2; break; 

        case „*„:  result = operand1 * operand2; break; 

        default: printf(“Invalid operation %c\n”, operation); 

    } 

 

    /* print result */ 

    printf(“result=%i\n”, result); 

 

    return 0; 

} 

 Two problems with this implementation 

o What if user enters 10 / 0? 

o The program will still print out “result” even if the operator was not supported.  How do 

we fix this? 

Character counter 
 Problem statement:  read characters from the keyboard and convert them to lower case until 

'0' (sentinel) is entered 

#include <stdio.h>       /* needed for printf and scanf */ 

 

int main() 

{ 

    char inchar, outchar; 

 

    scanf(“%c”, &inchar); 

 

    while (inchar != „0„)  

    { 

        if ((inchar >= 'A') && (inchar <+'Z')) 

            outchar = ('a' – 'A') + inchar; 

        else 

            outchar = inchar; 

 

        printf(“%c\n”, outchar); 

        scanf(“%c”, &inchar); 

    } 

 

    return 0; 

} 

Riemann integral 
 Problem statement: write a program to compute integral of a function f(x) on an interval [a,b]. 



ECE 190 Lecture 05 February 1, 2011 

 7 V. Kindratenko 

 Algorithm: use integral definition as an area under a function f(x) on an interval [a,b] 

 

∫ ( )  

 

 

    
   

∑ (  
   

 
 )
   

 

   

   

 

 Using systematic decomposition, we first derive a flowchart 

 

/* compute integral of f(x) = x*x+2x+3 on [a,b] */ 

#include <stdio.h> 

 

int main() 

{ 

    int n = 100;       /* hardcoded number of Reimann sum terms */ 

    float a = -1.0f;   /* hardcoded [a,b] */ 

    float b = 1.0f; 

a 

n 

f(x) 

b 

dx=(b-a)/n 

s+=f(a+dx*i)*dx 

i < n 

true 

i++ 

i=0 

s=0 

false 



ECE 190 Lecture 05 February 1, 2011 

 8 V. Kindratenko 

    float s = 0.0f;            /* computed integral value */ 

    int i;                     /* loop counter */ 

    float x, y;                /* x and y=f(x) */ 

    float dx = (b - a) / n;    /* width of rectangles */ 

 

    for (i = 0; i < n; i++) 

    { 

        x = a + dx * i; 

        y = x * x + 2 * x + 3; 

        s += y * dx; 

    } 

 

    printf("%f\n", s);  

 

    return 0; 

} 

Style 
 Style is what separates a good program from not so good 

 Once the program is written, a lot of time will be spent maintaining it, thus, it is important to 

make the maintenance task as simple as possible 

o Documentation 

 Program should be well-documented, it should start with an opening comment 

describing the purpose, input, output, authors, revision history, etc. 

 Each function must be documented as well 

 Variables should be documented 

 Code sections should be documented 

o Clarity 

 program should read like a technical paper 

 should be organized into sections based on functions implemented 

 code inside functions should be organized into paragraphs, each paragraph 

starting with a topic-specific comment and be separated from other paragraph 

by space 

 indentation should be used to identify code inside blocks or conditionals 

 variables should be named to have intuitive enough meaning 

 and so should be functions 

o Simplicity 

 The program should be made as simple and easy to understand as possible 

 Functions should be not extensively long 

 Avoid complex constructs, such as nested ifs 

 Statements should be short 

 Refer to ECE 190 C Coding Conventions at 

http://courses.engr.illinois.edu/ECE190/info/conventions.html 

http://courses.engr.illinois.edu/ECE190/info/conventions.html

