ECE190 MP5 - Text Compression with Huffman Coding, Spring 2010

ASCII coding is inefficient. Compare for instance the traps PUTS and PUTSP in the LC-3
ISA. The PUTS trap requires a single 8-bit ASCII character to be placed in a single 16-bit
memory location. However, the PUTSP trap requires two 8-bit ASCII characters to be
placed in one 16-bit memory location on the LC-3. For a finite amount of memory, for
instance 100 locations, PUTSP can store twice as many characters as PUTS. This is the idea
behind the following programming assignment, but we will take it farther and utilize a
more efficient coding method than ASCII to store text. The coding method is called
Huffman coding and is in fact as efficient as a coding scheme can be--it is provably optimal!

Consider the length 8 input string "aaaabbcd". How many different letters does this string
contain? Four: 'a' occurs 4 times, 'b' occurs 2 times, and both 'c' and 'd' occursonce. The
total string length is 8. Thus, 'a’ occurs half the time (the most frequently), 'b' occurs 2/8 of
the time, and both 'c’' and 'd' occur 1/8 of the time (the least frequently). The compression
idea we are after is to assign a unique binary string for each letter, where the most
frequently occurring letter gets the shortest string so that it takes the least amount of
memory to store, and the least frequently occurring letter gets the longest string. For this
example, such an encoding would be: 'a"is "1", 'b"is "01", 'c"is "001", and 'd" is "000".

The unique binary string for each character actually has a stronger property than
uniqueness--it is prefix-free, which gives the ability to avoid confusing the binary strings of
letters. This has a very elegant relationship with the finite-state machines studied earlier in
the course.

Compare the binary strings for each letter to ASCII encoding for each letter. In ASCII (and
neglecting any architecture-specific details, such as the 16-bit addressability considered
above in the LC-3 example) any string of length 8 takes (8 characters)*(8 bits per
character)=64 bits. In Huffman code, we see that this takes only (4 'a's)*(1 bit per 'a")+(2
'b's)*(2 bits per 'b')+(1 'c')*(3 bits per 'c')+(1 'd")*(3 bits per 'd')=14 bits! Even in the worst
case where the length 8 string is composed of 8 different letters, such as in "abcdefgh"”, the
encoding would be 20 bits, still a large improvement over the 64 bits required for ASCII.

Milestone 1 - Huffman Tree Generation and Text Compression

The task for the first milestone is given a text file of ASCII characters, take the file's
contents (assumed to be less than some fixed length to avoid annoying edge cases, see the
given code), generate a binary tree to determine an optimal encoding and encode the given
string. Note that we will be skipping an important step--the output of your program will
still be in ASCII, just written as the codes. This saves a lot of tedious work. So for the
example "aaaabbcd", the input and output of the program are:

./mp5.1 -c tests/testO.txt

test.txt contents are: aaaabbcd

(with no newline or that would also be encoded, see the given test files)

where -c stands for "compress" and executing mp5 on the test0.txt file creates an output
file tests/test0.txt.hc with contents: 11110101001000

(these are ASCII ones and zeros, so '1' and '0', with no newline at the end, see the given test
files)

The major steps of the Huffman coding algorithm are:
1. Read ASCII text from a specified input file into a buffer in memory. THIS MUST BE
DONE USING fopen() and getc() (or fscanft, just some function that works
with file streams).

2. Generate an initial forest of Huffman trees based on the contents of this buffer. A
Huffman tree is a binary tree. A forestis a disjoint union of trees--for our purposes,
a forest is just a singly linked-list. The data type for the Huffman tree and the forest
is a singly-linked list of binary trees:

typedef struct htree_t {

char letter; /* letter represented by this tree */

int weight; /* number of times letter appears */

struct htree_t* left; /* pointer to left subtree */

struct htree_t* right; /* pointer to right subtree */

struct htree_t* next; /* pointer to next tree in the forest */
} HTREE;

where letter is the letter specified by the tree, weight is the number of times the
letter appears in the ASCII text, left is the pointer to the left child, right is the pointer
to the right child, and next is the pointer to the next Huffman tree in the linked-list.

Implement the function appendForest to add new trees to the forest, and
implement the function searchForestLetter to determine if a letter already has
a corresponding tree in the list of trees and you should increment its weight.

You must use mal loc() for the generation of new entries of this data structure as
you will be appending, updating, and removing entries from the forest as a part of

the algorithm.

The initial forest of Huffman trees for the example of "aaaabbcd" is:

letter = ‘@’ | NeXt| letter = ‘b’ | "EXt||etter = ‘C’ |N€XY| |etter = ‘d’ |NEXt
weight = 4 weight = 2 weight =1 weight =1

h

NULL

left right left right left right left right

NULL | | NULL NULL | | NULL NULL | | NULL | | NULL | | NULL

3. Run the Huffman coding algorithm on the initial forest. This is done with a call to
the huffmanize function (hint: recall pass-by-value versus pass-by-reference):

Find the tree (called smal lestTree) in the forest with the lowest weight:
ties are broken by taking the last occurrence of the lowest weight tree using
the functions searchForestMin and searchForestMinHelp. In the
example above, this would be the tree corresponding to the letter ‘d’.
COMPARE TO THE GOLD FILE OUTPUT AS THERE ARE MANY POSSIBLE
UNIQUE ENCODINGS, BUT YOU MUST BREAK TIES IN THIS WAY OR YOU
WILL RECEIVE NO CREDIT BECAUSE YOUR OUTPUT WILL BE DIFFERENT
THAN THE GOLD FILE.

Remove this tree from the forest using the function cutForest. Hint: do
not Free() the memory, just change the pointers in the list.

Repeat 3a and 3b to find and remove the next smallest weight tree, called
smal ITree. In the example above, this would be the tree corresponding to
the letter ‘c’.

Create a new tree called newTree with no letter, weight equal to the sum of
the weights of smal lestTree and smal 1 Tree, left equal to

smal lestTree, and right equal to smal I Tree.

Add newTree to the forest using appendForest.

Recursively repeat 3a to 3e until there is a single tree in the forest (that
means until next = NULL for every tree in the list). The single tree in the
forest is called the root of the Huffman tree.

For the example above, the tree is:

next |

weight = 8 NULL
ight
left \Lg\
_ v |next
weight = 4 L‘:Zti;;_a[l > NULL
left ight -
| \u_g“ — | left right
weight = 2 letter = *b” NS
. = il NULL NULL
ot right weight =2
left right
NULL NULL
| tt = ’d‘ next; B) t
etter ! 5/ NULL | | letter =" |NeXt T
weight =1 weight = 1
left \:ight left right
NULL NULL NULL NULL

4. From this single Huffman tree, there is now a unique encoding for each letter in the
tree, where following a left pointer in the tree yields a value of '0' and following a
right pointer in tree yields a value of '1'.

So for instance, ‘@’ is encoded simply as the binary string “1” since it follows one
right pointer, and ‘b’ is encoded as the binary string “01” since this letter is at a the
path one left pointer, one right pointer, ‘d’ is encoded as “000” since it is along three
left pointers, and ‘c’ is encoded as “001” since it is two left pointers and then a right.

5. Finally, using fopen() and fprintf(), create a file called <inputFileName>.hc
where <inputFileName> is whatever file was specified when calling mp5.

THIS FILE MUST BE NAMED THE SAME AS THE INPUT FILE NAME WITH .hc
APPENDED OR YOU WILL RECEIVE NO CREDIT.

We will use the following command to compile your code, so make sure the file is called
mpb5.1.c.

gcc -Wall -g -ansi mp5.1.c -0 mp5.1
Milestone 2 - Decompression

To perform decompression, there is a small addition that must be made in the compression
step: the Huffman tree must be encoded in some way and placed at the beginning of the
compressed file. There are varieties of ways to do this, but we will choose the following.
This technique is an example of serialization.

For the example of “aaaabbcd”, the serialized Huffman tree is a string: “a;4;b;2;c;1;d;1;\n”,
which just means that the letter ‘a’ has weight 4, the letter ‘b’ has weight 2, the letter ‘c’ has
weight 1, and the letter ‘d’ has weight 1. This is a semicolon-delimited string.

This string must be stored at the beginning of the compressed file to be used by the
decompression algorithm, so modify the compression code appropriately, for the example
the output file test0.txt.hc contains:

a;4:b;2;c;1;d;1;
11110101001000

(where there is a new line at the end of the first line and there is no new line at the end of
the second line).

The initial forest of trees recreated from this header is the same as before.

YOU MAY ASSUME THAT THE INPUT TEST WILL NOT CONTAIN ANY SEMICOLONS (%’
characters). With this assumption, you can easily recreate the initial forest of trees from
this header description by using the strtok function. This should be implemented in the

Upon creating this initial forest of trees, simply run the huffmanize function you
implemented in Milestone 1, and now you have the Huffman tree used to encode the file in
memory (the same tree above).

Now given the Huffman tree used to encode the compressed file, the decompression
algorithm is simple: read a symbol---call this sym for the following discussion---from the
Huffman encoded file while keeping a pointer in the tree, starting at the root. If the current
pointer in the Huffman tree corresponds to a tree with a letter that has been initialized to a
value other than “\0’, you have reached a leaf of the tree, which contains an ASCII character.
Write this character to a buffer. If this is not the case, then the tree is not a leaf. If symis
‘0’, look at the left subtree and repeat. If Symis ‘1’, look at the right subtree and repeat.

Finally, write the buffer of decoded characters to a file named <filename>.dc. Where .dc
stands for decompressed. Here is an example of the executable being called as intended:

./mp5.2 -d tests/testO.txt.hc

This creates a file called test0.txt.hc.dc, which must have contents exactly equal to test0.txt.
In the case of the “aaaabbcd” example, the contents of test0.txt.hc.dc would be that same
string (with no newline). If you are confused, look at the test files and play with the gold
code.

At this point, you have gone full circle: you compressed a file using Huffman coding and
decompressed a Huffman encoded file. (Again, modulo the detail about this representation
being in ASCII, but the point is valid nonetheless.) The complete compression and
decompression sequence is:

./mp5.2 -c tests/testO.txt

./mp5.2 -c tests/testO.txt.hc
diff tests/testO.txt tests/testO.txt._hc.dc

The first line creates the file test0.txt.hc and the second line creates the file test0.txt.hc.dc.

We will use the following command to compile your code, so make sure the file is called
mp5.2.c.

gcc -Wall -g -ansi mp5.2.c -0 mp5.2

Hints
e Initialize buffers for strings using cal loc

Initialize the elements of the Huffman forest using mal loc

Review pointers, make liberal use of gdb will constructing the initial forest to look at
the next, left, and right pointers. The graphical version is extremely useful in this
regard. Likewise, you can use the printTree function given, but if your tree is bad,
this may go into an infinite loop or be otherwise not helpful.

There are two different forms of recursive functions being implemented. Most are
pass-by-reference (such as appendForest) and utilize this double indirection (such
as HTREE**) to modify the Huffman tree. In these cases, the recursive argument is
accumulated as a parameter. The cutForest function on the other hand relies on
returning the recursive result and the pointer to the Huffman tree must be
reassigned based on the return value of the function.

Specifics

When you turn in your code, your program files must be called mp5.1.c and mp5.2.c.
You must implement the required functions. YOU MAY NOT MODIFY THE
ARGUMENT LISTS. You are not required to use additional functions. You may if you
think they are helpful.

You may not include any additional header files (other than the ones already
included).

You may not use any additional global variables (other than the ones provided).
You may define additional constants to improve the readability of your code. (i.e.,
using #define statements).

Your code should be in good coding style, with proper indentation on each line to
indicate functional blocks and explanatory comments. A brief header describing the
program and headers for main function and support functions are important.

Your code must pass compilation. You will not receive any functionality points on a
code that fails to generate a binary. You will also lose points for compiler warnings.
Turn in your code using the ECE190 handin script. Your files must be called mp5.1.c
and mp5.2.c. We will NOT grade files with any other name. To turn in the code, first
login to any EWS machine and type ece190. Change to the directory containing your
code and type (for respectively milestone 1 and 2)

handin --MP 5.1 mp5.1.c

handin --MP 5.2 mp5.2.c

You may hand in as many times as you like, but only the last submission will be time
stamped and graded. Note that only the .c file is submitted.

Grading

Your code functionality will be graded by a computer script. Test your program
using our test cases provided in the tests directory of the provided files. You must
ensure that your program terminates properly and does not loop forever.

COMPARE YOUR PROGRAM’S OUTPUT TO THE PROVIDED TEST CASES USING DIFF
OR VIMDIFF.

Functionality (65%)
e 5%: Program terminates correctly.
e 30%: (Checkpoint 1): Program takes an input ASCII text file and creates a Huffman
encoded output text file (using ASCII Os and 1s as the binary strings).
e 30%: (Checkpoint 2) Program takes an input Huffman encoded text file (using ASCII
Os and 1s as the binary strings) and creates the corresponding ASCII encoded text
file.
Style (20%)
e 5%: Program compiles without errors or warnings.
e 5%: Follows appropriate instructions such as using getc (or fscanf) and
Tprintf for interacting with files.
e 10%: Program uses the given data structure, specified functions, and recursion
where specified.
Documentation (15%)
e 5%: Introductory paragraph explaining program's purpose and approach.
¢ 10%: Good comments and variable names.

