UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN]
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Programming Studio #6

ECE 190

ECE ILLINOIS

Programming Studio #6

e Concepts this week
— TRAP instruction and trap service routines

— Subroutines
— Stack

Announcements

e MP2 Checkpoint 1 due Weds. 3/3 at 5pm
— Read handout carefully to not lose points

e MP2 Checkpoint 2 due Weds. 3/10 at 5pm

e Note: MP2 requires use of TRAPs and
subroutines covered today!

— OUT, PUTS

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ‘]

' TRAP Service Routines

TRAP Routines are provided by the Operating System and called by
a User program to perform a specific task

Uses the TRAP instruction to call a TRAP Routine
TRAP 1111 0000 trapvect8

trapvect8 is an 8-bit offset
— Used to determine the starting address of a TRAP routine

— Trap vector table is in memory locations x0000 through x00FF and contains
starting addresses of the TRAP routines

— How many possible traps are there?

When a TRAP instruction is used, R7 is loaded with the current
contents of PC, and PC is loaded with the address of the TRAP
routine

— Why?

— When the TRAP routine is completed, PC is loaded with the value stored in R7
and control is returned to the user program

— What does this mean about using R7 as a general purpose register now?

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING]

TRAP Routines

x20 GETC Read one character from keyboard into RO
ANDed with 0x00FF; doesn’t echo

x21 OouT Write RO[7:0] to display

X22 PUTS Display string from subsequent locations

starting at mem[RO] until x0000 (null
character) in a location

X23 IN Read a single character from keyboard;
echo character; RO <- character & x00FF
x24 PUTSP Display string from subsequent locations

starting at mem[R0], with 2-chars per
location, bits [7:0] first, then [15:8] until
x0000 in a location; [15:8] = x00 if odd
length

X25 HALT Halt execution and print message

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ‘]‘

TRAP Example: echo again

. ORI G x3000
LEA RO, MGG
TRAP x22 : PUTS
LOOP TRAP x20 ; GETC
TRAP x21 ; OUT
BRnzp LOOP
MGG . STRIN&Z "User | nput:
. END

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]

Subroutines

Subroutines allow us to write a piece of code once, and
execute it several time throughout a program

Use JSR(R) instruction to jump to a subroutine
JSR 0100 1 PCOFfsetll

JSRR 0100 O OO baseReg 000000

When a JSR(R) instruction is executed the return
address is stored in R7, and PC is loaded with the
address of the subroutine

— Bit 11 of JSR(R) determines the addressing mode
— PC-relative or Base Register

Use RET (JMP R7) instruction to return to caller function

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ‘]

Subroutlne Example: Multiply

. ORI G x3100 e IMPORTANT:
, RO <- Rl * R Subroutines should
MULT ST R2, SaveR2

not clobber registers!
AND RO, RO, O
MooP ADD RO, RO, i ° >ave/Restore any

ADD R2. R, -1 registers used in the
BRo M_OCP subroutine besides
LD R2. SaveR? the register used to
RET hold a return value
SaveR2 . BLKW1 e Callee vs. caller save

. END

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ‘]

Full Example

To demonstrate how to use TRAP routines and
Subroutines in a program, we have provide a Multiplier
program (multiplier.asm)

The program retrieves two digits from the user (ranging
from 1 to 9), multiples them together, and displays the
answer

Several TRAP routines are used to get input and display
output. Also, MULT subroutine is used to multiple the
two numbers, and B2A (Binary2ASCII) converts the
result into a data type that can be displayed on the
screen

Note: If a subroutine calls a TRAP function you must
save R7 and restore it before you return!

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]

Stack

A stack is an abstract data type

— An abstract data type is a storage mechanism that is
defined by the operations performed on it

With a stack the last data you stored in it is the first data
you remove from it

— Last In, First Out (LIFO)
Inserting an element onto the stack is called a Push
Removing an element from the stack is called a Pop

Questions:
— Can a stack be empty (no elements)? What does pop do?

— Can a stack ever be full (unable to insert more elements) with
this definition?

— Does the LC-3 have finite memory? What does push do?

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]

B Implementing the Stack

Sequence of memory locations along with a stack
pointer (R6) that keeps track of the top of the stack

— R6 = location of most recent element pushed

Push puts a value onto the stack

— Stack pointer decremented and the value is stored at mem[R6]
PUSH ADD R6, Ro6, -1

STR RO, R6, O

Pop takes a value from the stack
— Value loaded from mem[R6] and stack pointer incremented

POP LDR RO, R6, O
ADD R6, R6, 1

Is order important? What does R6 start at? What
if stack empty? What if it’s full?

Exercise: Palindrome Check

e Create a program that checks if a string is
a palindrome

— Implementation should use a Stack

— PUSH and POP Subroutines are provided for
you (stack.asm)

e Examples:
— racecar
— otto

— hannah
- 12321

