
Programming Studio #6

ECE 190

Programming Studio #6

• Concepts this week

– TRAP instruction and trap service routines

– Subroutines– Subroutines

– Stack

Announcements

• MP2 Checkpoint 1 due Weds. 3/3 at 5pm
– Read handout carefully to not lose points

• MP2 Checkpoint 2 due Weds. 3/10 at 5pm

• Note: MP2 requires use of TRAPs and
subroutines covered today!
– OUT, PUTS

TRAP Service Routines

• TRAP Routines are provided by the Operating System and called by
a User program to perform a specific task

• Uses the TRAP instruction to call a TRAP Routine

TRAP 1111 0000 trapvect8

• trapvect8 is an 8-bit offset

– Used to determine the starting address of a TRAP routine

– Trap vector table is in memory locations x0000 through x00FF and contains
starting addresses of the TRAP routines

– How many possible traps are there?

• When a TRAP instruction is used, R7 is loaded with the current
contents of PC, and PC is loaded with the address of the TRAP
routine

– Why?

– When the TRAP routine is completed, PC is loaded with the value stored in R7
and control is returned to the user program

– What does this mean about using R7 as a general purpose register now?

TRAP Routines

Trap vector Assembler Name Description

x20 GETC Read one character from keyboard into R0
ANDed with 0x00FF; doesn’t echo

x21 OUT Write R0[7:0] to display

x22 PUTS Display string from subsequent locations
starting at mem[R0] until x0000 (null starting at mem[R0] until x0000 (null
character) in a location

x23 IN Read a single character from keyboard;
echo character; R0 <- character & x00FF

x24 PUTSP Display string from subsequent locations
starting at mem[R0], with 2-chars per
location, bits [7:0] first, then [15:8] until
x0000 in a location; [15:8] = x00 if odd
length

x25 HALT Halt execution and print message

TRAP Example: echo again

.ORIG x3000

LEA R0, MSG

TRAP x22 ; PUTS

LOOP TRAP x20 ; GETC

TRAP x21 ; OUTTRAP x21 ; OUT

BRnzp LOOP

MSG .STRINGZ "User Input: "

.END

Subroutines

• Subroutines allow us to write a piece of code once, and
execute it several time throughout a program

• Use JSR(R) instruction to jump to a subroutine

JSR 0100 1 PCOffset11

JSRR 0100 0 00 baseReg 000000JSRR 0100 0 00 baseReg 000000

• When a JSR(R) instruction is executed the return
address is stored in R7, and PC is loaded with the
address of the subroutine

– Bit 11 of JSR(R) determines the addressing mode

– PC-relative or Base Register

• Use RET (JMP R7) instruction to return to caller function

Subroutine Example: Multiply

.ORIG x3100

; R0 <- R1 * R2

MULT ST R2, SaveR2

AND R0, R0, 0

MLOOP ADD R0, R0, R1

• IMPORTANT:
Subroutines should
not clobber registers!

• Save/Restore any
registers used in the

MLOOP ADD R0, R0, R1

ADD R2, R2, -1

BRp MLOOP

LD R2, SaveR2

RET

SaveR2 .BLKW 1

.END

registers used in the
subroutine besides
the register used to
hold a return value

• Callee vs. caller save

Full Example

• To demonstrate how to use TRAP routines and
Subroutines in a program, we have provide a Multiplier
program (multiplier.asm)

• The program retrieves two digits from the user (ranging
from 1 to 9), multiples them together, and displays the from 1 to 9), multiples them together, and displays the
answer

• Several TRAP routines are used to get input and display
output. Also, MULT subroutine is used to multiple the
two numbers, and B2A (Binary2ASCII) converts the
result into a data type that can be displayed on the
screen

• Note: If a subroutine calls a TRAP function you must
save R7 and restore it before you return!

Stack

• A stack is an abstract data type

– An abstract data type is a storage mechanism that is
defined by the operations performed on it

• With a stack the last data you stored in it is the first data
you remove from ityou remove from it

– Last In, First Out (LIFO)

• Inserting an element onto the stack is called a Push

• Removing an element from the stack is called a Pop

• Questions:

– Can a stack be empty (no elements)? What does pop do?

– Can a stack ever be full (unable to insert more elements) with
this definition?

– Does the LC-3 have finite memory? What does push do?

Implementing the Stack

• Sequence of memory locations along with a stack
pointer (R6) that keeps track of the top of the stack
– R6 = location of most recent element pushed

• Push puts a value onto the stack

– Stack pointer decremented and the value is stored at mem[R6]– Stack pointer decremented and the value is stored at mem[R6]

PUSH ADD R6, R6, -1

STR R0, R6, 0

• Pop takes a value from the stack

– Value loaded from mem[R6] and stack pointer incremented

POP LDR R0, R6, 0

ADD R6, R6, 1

• Is order important? What does R6 start at? What
if stack empty? What if it’s full?

Exercise: Palindrome Check

• Create a program that checks if a string is
a palindrome
– Implementation should use a Stack

– PUSH and POP Subroutines are provided for – PUSH and POP Subroutines are provided for
you (stack.asm)

• Examples:

– racecar

– otto

– hannah

– 12321

