
Programming Studio #4

ECE 190

Programming Studio #4

• Topics this week:

• Systematic Decomposition

• Memory Addressing Modes

• In Studio Assignment

– LC-3 Programming Assignment

Announcements

• MP1
– Due Wednesday, February 17th at 5PM

– Read handout carefully

– Cheating Policy is on the website

• Exam 1 – Thurs 2/25 – 7pm-9pm
– Review Session: TBA

– Report conflicts to professors NO LATER
THAN Feb 17th

Systematic Decomposition

• Do not go straight to coding

• Start with a problem in plain language

– Break it into smaller steps progressively

– Continue until steps small enough

– Finally, steps can be turned into code

Example: Multiplication

• Problem:

– Design a multiplier program in LC-3 binary.
The program should load numbers from
x3100, x3101. The numbers are multiplied,
and stored back in x3102.

• Given algorithm: Add X to itself Y times.

– X * Y = Z.

– 5 x 3 = 5 + 5 + 5

– Loop using branch instructions.

First Phase: Large Steps

• First few steps help
show program flow

• For multiplication we
have 3 main steps

• Why do we initialize
registers?

Middle Phase: Small Steps

• Break large steps into
smaller steps

• Specify program flow
more completely

• Include multiplication
algorithm

• Add control flow to
allow loop behavior

Final Phase: Pseudo Code

• Take small steps and
convert to pseudo

• Choose which registers
hold which data

– R2 stores running sum

– R4 and R5 to hold numbers

• Move from pseudo
instructions into assembly
instructions.

• Why don't we need to
initialize R4 or R5?

ASM and Machine Code

Addressing Modes

• Need to move data in/out of registers
from/to memory

• Several ways to specify the memory
location

– PC Relative

– Base + Offset

– Indirect

– LEA

PC Relative

• Syntax:

– LD Rx, imm_val | Rx <= MEM[PC1+imm_val]

• Uses the incremented PC of the current instruction plus an immediate value
to calculate address:

– Address = PC + 1 + imm_val

• imm_val is sign extended to 16 bits

• Used when data is in a single location close to the instruction

• Example:

Address Contents

x3005 LD R1, x3

x3006

x3007

x3008

x3009 x22

• R1 receives contents of MEM[x3006+x3] = MEM[x3009] = x22

Base + Offset
• Syntax:

– LDR Rx, Ry, imm_val | Rx <= MEM[Ry+imm_val]

• Uses the contents of a register plus immediate value to calculate address:

– Address = Ry + imm_val

• Used when data is too far to access with PC Relative mode, or when
accessing many values stored close to an address not known when writing
the program

• Example: (Assuming R2 holds the value x5000)

Address Contents

x3005 LDR R1, R2, x0

x3005 LDR R3, R2, x1

…

x5000 x1A

x5001 x22

• R1 receives contents of MEM[x5000+x0] = x1A

• R3 receives contents of MEM[?] = ?

• NOT USED TO COPY CONTENTS FROM ONE REGISTER TO THE
OTHER!!!

Indirect

• Syntax:

– LDI Rx, imm_val | Rx <= MEM[MEM[PC1+imm_val]]

• Uses the incremented PC of the current instruction plus an immediate value
to calculate an address. Then reads the contents of that memory location
and uses them as the address from where actual data is accessed:

– Address = value at location [PC + 1 + imm_val]

• imm_val is sign extended to 16 bits

• Used when data is in a single location far from the instruction

• Example:

Address Contents

x3005 LDI R1, x1

x3006

x3007 x4000

…

x4000 x22

• R1 receives contents of MEM[MEM[x3006+x1]] = MEM[MEM[x3007]] =
MEM[x4000] = x22

Load Effective Address

• Syntax:

– LEA Rx, imm_val | Rx <= PC1+imm_val

• Uses the incremented PC of the current instruction plus an immediate value
to calculate address and places it in the register:

– Address = PC + 1 + imm_val

• imm_val is sign extended to 16 bits

• Used when we need to load an address into a register (for use in LDR/STR)

• Example:

Address Contents

x3003 xBE

x3004 xEF

x3005 LEA R1, -3

x3006 LDR R0, R1, x0

x3007 LDR R2, R1, x1

• R1 receives x3005+1-3 = x3003, R0 Receives?, R2 Receives?

Programming Studio Assignment

• Sum a list of N numbers and store result
in x4000
– Load N from address x3100

– The list of numbers starts at x3101

– Use systematic decomposition to break the
problem into steps, then create the machine
code.

– You may assume that N >0.
• Hint: Use LD/ST, LDR/STR, LDI/STI, LEA to your
advantage

