
Programming Studio #3

ECE 190

Programming Studio #3

• Concepts this week:

– Finite state machines

– LC-3 ISA– LC-3 ISA

– Machine language

– LC-3 simulator

Announcements

• MP1 due Weds. 2/17 at 5:00pm
– Read handout carefully to not lose points

– Office Hours increased starting next Weds.

• Exam 1: Thurs. 2/25, 7:00pm-9:00pm• Exam 1: Thurs. 2/25, 7:00pm-9:00pm
– Feb. 18th hard deadline for conflict requests

– Practice exams on course website

– Exam review TBA

• Look at the “Student Manual” on the
course website

Finite state-machines (FSM)

• Sequential circuit
representation (memory)

• Detecting 101 in a string
of bits

– Notation of state transition:

A B
1/0

0/0 1/0

1/1– Notation of state transition:
input/output

– Input:
1101000010101…

– Output:
0001000000101…

– States:

• A (start / reset [none of
pattern to be detected seen])

• B (1 seen in input)

• C (10 seen in input)

C

0/0

0/0

1/1

LC-3 Overview
• What is…

– the LC-3?

• What are its address space and addressability?

– 2^16 addresses and 16 bits / address

• What are registers? How many are there? 8

• What is the PC? MAR? MDR?

• What is an instruction?

– Opcode and operands

– machine language?: 0001 010 000 0 00 001

– assembly?: ADD R2, R0, R1

ADD DR, SR1, SR2

– the result? DR <- SR1 + SR2

• How many opcodes are there?

LC-3 Overview (cont)
• What are…

– Condition codes?

• single-bit registers modified on some instructions to indicate
whether the result of the instruction was negative (N), zero
(Z), or positive (P)

– Addressing modes?– Addressing modes?

• Immediate (literal): from the instruction
– E.g., ADD R2, R3, #7 ; R2 <- R3 + 7

• Register: from a register
– E.g., ADD R2, R3, R4 ; R2 <- R3 + R4

• Note: value in memory at address xDEAD is M[xDEAD]
(sometimes mem[xDEAD])

• PC’ is incremented PC, so PC’=PC + 1

• PC-relative (LD, ST): M[PC’ + relative offset]

• Others for later: indirect and base+offset

LC-3 Tools

• lc3convert: converts human readable machine code files to LC-3
simulator readable files (object files)

– Syntax: lc3convert filename.bin

• lc3as: converts human readable assembly into object files

– Syntax: lc3as filename.asm

• lc3sim: command line LC-3 simulator

– Syntax: lc3sim filename.obj

• lc3sim-tk: graphical LC-3 simulator

– Syntax: lc3sim-tk filename.obj

LC-3 Programming Flowchart

filename.asm

filename.bin

lc3as filename.asm

lc3convert filename.bin
filename.obj

filename.bin lc3convert filename.bin

lc3sim filename.obj lc3sim-tk filename.obj

Simulating a program
• Login, type the following:

– ece190

– lynx http://courses.ece.illinois.edu/ece190/discussion/spring10/ps03/mult.bin

• You are now in the lynx web browser, type the following:

– d, <down arrow>, <enter>, <enter>, q, y

• You are now back on the command shell, type:

–– lc3convert mult.bin

– lc3sim mult.obj

• You are now in the LC-3 simulator, type the following:
– help

– list x3000

– memory x3100 5

– memory x3101 10

– continue

– list x3100

• What is the value at memory address x3102?

mult.bin
0011 0000 0000 0000 ; start of code at x3000

0101 010 010 1 00000 ;x3000 AND R2,R2,#0 initialize: R2 <- 0

0010 100 0 1111 1110 ;x3001 LD R4, xFE load first value: R4 <- M[x3100]

0010 101 0 1111 1110 ;x3002 LD R5, xFE load second value: R5 <- M[x3101]

0001 010 010 0 00 100 ;x3003 ADD R2,R2,R4 loop: running sum: R2 <- R2 + R4

0001 101 101 1 11111 ;x3004 ADD R5,R5,#-1 decrement loop counter: R5 <- R5-1

0000 001 1 1111 1101 ;x3005 BRp x3003 continue looping if R5 is positive

0011 010 0 1111 1011 ;x3006 ST R2, xFB store result: M[x3102] <- R2

1111 0000 0010 0101 ;x3007 HALT halt the lc-3

• First line states where program starts in memory (address x3000)

• Binary code on the left is separated into segments (fields)
– Each instruction interprets bits differently
– Look at the LC-3 Instruction Set on the course webpage (or in the book)

• Text on the right after semicolon are comments,
– Give some meaning to what the code does

– Required that you document and comment your code

• What does the program do?

• More details: see the tutorial.pdf file on the website and the Student Manual

