Programming Studio #13

ECE 190

ECE |LL|N0|S DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING][

Programming Studio #13

e (Concepts this week:
— Singly linked lists

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]‘

What IS a Singly Linked List

e Alinked list is a series of struct Node {

“nodes”. int Value;

e Each node has data, and struct Node *next_ptr:
a pointer to the next | -
node. by

e Lists can be of any size,
and each “chain link” is
allocated when needed.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING]‘

Create a Linked List

e |Let's make a linked list that has three values stored it in.

e |Let each one point to the next one, and let the last node
have a NULL pointer.

e As we create new lists, insert them into the list.

ECE ILLINOIS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING]

Example Code

struct Node *one_ptr = NULL;
struct Node *two_ptr = NULL;
struct Node *three_ptr = NULL;

e

one_ptr = malloc (sizeof (strcut Node));
one_ptr -> Value = 1; 1 3

two_ptr = malloc (sizeof (struct Node));
two_ptr -> Value = 13;

—e

one_ptr -> next_ptr = two_ptr;

84

three_ptr = malloc (sizeof (struct node));

three_ptr -> Value = 84;
two_ptr -> next_ptr = three_ptr;

ECE lLLIMNOI\S DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Traversing Linked List

e How do we travel through
a list of any size?

e et us start with one
pointer, a “head” pointer.

e

e

84

1

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]‘

Traversing Linked List

| > 1

struct Node *head_ptr = NULL;

/* Make our three item list */
makeList (&head_ptr);

o

/* Print all values in list */

while (head_ptr != NULL)

{
printf ("%d\n"”, head_ptr -> Value;
head_ptr = head_ptr -> next_ptr; 84

—e

/* Does this really work? */

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]‘

Traversing Linked List

/* No, because we cannot change the > 1
pointer back to the beginning! */

struct Node *head_ptr = NULL;
struct Node *list_ptr = NULL;

—e

/* Make our three item list */ 13
makelList (&head_ptr);
list_ptr = head_ptr;

—e

/* Print all values in list */
while (list_ptr != NULL) 84
{

printf ("%d\n", list_ptr -> Value;
list_ptr = list_ptr -> next_ptr;

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING]‘

Inserting Items

void insertList (

e In previous examples, we struct Node *head_ptr,
jUSt hard-coded the struct Node *new_ptr)
creation of a list. {

e But we need to be able to [* Iterate through all items */

handle any list size. <code>

e Solution: Write code to /* Change tail pointer from NULL

Insert items one at a * t0 new_ptr.
time. J
<code>

ECE ILLINOIS

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Inserting Items

 What happens when
head_ptr is NULL?

e Need this code to handle
this special case.

void insertList (
struct Node *head_ptr,
struct Node *new_ptr)

=

[* Iterate through all items */
<code>

/* Change tail pointer from NULL
* to new_ptr.

*/

<code>

[

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ’]‘

Inserting Items

void insertList (

e Solution: Pass in pointer struct Node **head_ptr,
ointing to head_ tr! struct Node *new_ptr)
P
e Be careful, only modify {

" . . ¥ — ¥k .
pointer to head pointer if G ek Sy = L
head pointer is NULL. [* Special case /

<code>
e Does your head hurt yet?
— (mine does) /* Iterate through all items */
<code>

/* Change tail pointer from NULL
*to new_ptr.
*/

<code>

PSMP13

e Download psmp1l13.c from the website.

e Implement function code for inserting,
deleting, and printing all items in a linked
list.

 Modify the code to use doubly linked lists
for fun.

