
Programming Studio #12

ECE 190

Programming Studio #12

• Topics this week:

• Basic Data Structures

• Enumerations

• Dynamic Memory Allocation

• In Studio Assignment

– Complex Number Adder

Announcements

• MP 5
– Challenging, so start early.

– Checkpoint 1 Due date extended by 1 week

• Exam 2
– Regrade requests due today.

• Final Exam
– Monday May 10th – 1:30 – 4:30

– Conflict Exam: Friday May 7th – 1:30 – 4:30
(see website to see if you are eligible for a
conflict exam). Notify us by April 30th

Cheating

• Reminder: We do not tolerate any form of
cheating.
– Sharing code is cheating

– Sharing code and renaming variables is still
cheating

– Sharing code and adding/removing
spaces/tabs is still cheating

• We have identified multiple cheaters on
MP3 and MP4…guilty parties will be
notified soon

Data Structures

• What are the basic data types in C?

– Integer, float, double, character

• What about data in the real world?

– Also integer, float, double, characters

– Data is often organized into groups

• Vectors: direction, magnitude

• Complex numbers: real part, complex part

• Student record: last name, first name, UIN, GPA, standing…

Structures

• Grouping of primitive data types

• Student Record Example

First Name (char[])
Last Name (char[])

netID (char[])
UIN (unsigned int)

GPA (float)

Student Record Structure

John
Doe
doe1

123456789
3.99

Student 1

Sarah
Smith

Smith1
987654321

4.00

Student 2

Structures
• We must first define the customized data type

(structure)

• We can then create variables whose type is the
structure

struct student_record {
char

first_name[12];
char last_name[12];
char netid[8];
unsigned int uin;
float gpa;

};

int main(){
struct student_record student_1;
student_1.first_name = ``John``;
student_1.last_name = ‘’Doe’’;
student_1.uin = 123456789;

...
}

First Name (char[])
Last Name (char[])

netID (char[])
UIN (unsigned int)

GPA (float)

Student Record Structure

Structures

• Memory is allocated the same way as for any variable

– Locals are allocated on the run-time stack and globals are
allocated on the global data section

– Structures occupy contiguous regions of memory blocks. Each
block takes as much memory as the sum of all of the member
elements

• How much space does each student entry take up?

• Structure arrays can also be created:
int main(){

struct student_record students[100];
student[0].first_name = ``John``;
student[0].last_name = ‘’Doe’’;
student[0].uin = 123456789;

...
}

Structures and Pointers

• Since structures are handled the same way as normal data types in C,
pointers to structures can be created

• The pointers can be dereferenced and accessed

• Another way of accessing the values stored in pointers

• The ‘->’ expression is like the dereference operator ‘*’ except it is used for
dereferencing member elements of a structure

int main(){
struct student_record

students[100];
struct student_record *st_ptr;
st_ptr = &students[3];

(*st_ptr).gpa = 3.25;

st_ptr->gpa = 3.25;

Enumerations

• What if your data types should contain certain values?
– Storing multiple choice answers (A,B,C,D)

– Opcodes in an assembly language

• You could just use an integer value to represent each of
these things, but it is difficult to read for humans?
– Which opcode is this? if(op == 2)

• Solution: create a list where each number is assigned a
human readable representation
– This is much easier: if(op == LD)

• Enumerated list:
enum opcode {BR, ADD, LD};
enum opcode op;
op = 1;
if(op == LD) Is this if statement true?

Dynamic Memory Allocation

• So far we know how to allocate memory
using arrays
– Limitation: we can only allocate a constant

amount of elements

– This amount must be known at compile time
(specified in the source code)

– Waste of memory, or danger of not allocating
enough space to store all data

• What if we want to allocate during run-
time instead of compile time?

Dynamic Memory Allocation

• Use function “malloc(size)” to allocate memory at run time
– Size is a parameter that tells malloc how many bytes to allocate

– Memory is allocated in the heap

• Dynamic memory must be freed manually using “free(<pointer>)”
– <pointer> is a pointer to the memory block that needs to be freed

– Without freeing no other programs/variables may use this memory
block (we can run out of memory)

int main(){
struct student_record *students;
int number;
printf(``How many students?``);
scanf(``%d``,&number);
students = (student_record*) malloc(number * sizeof(student_record));
/* students is now a pointer to the 0 th element of the ‘students’

block */
students[0].first_name = ``John``; /* behaves jus t like an array */
students->last_name = ‘’Does’’;

/* Code that initializes all student records */

free(students);
}

Programming Studio Assignment

• Complex number adder
– Create a structure for a complex number (float real_part, float

complex_part);

– Ask the user how many complex numbers will be entered

– Dynamically allocate enough space to hold all the complex
numbers

– Ask the user to enter each number (first ask for the real part,
then ask for the complex part)

– Add all the complex numbers together:
• The real_part of the sum is just the sum of the real parts of all the

numbers

• The complex_part of the sum is just the sum of the complex parts
of all the numbers

– Print out the answer in the format:
“Sum = <real_part> + j <complex_part>”

– Remember to free the memory after you’re done.

