
Introduction to GPU
Programming

Volodymyr (Vlad) Kindratenko
Innovative Systems Laboratory @ NCSA

Institute for Advanced Computing
Applications and Technologies (IACAT)

Part III

• Performance considerations
– Host side

• Events, streams, compute capability
• Host memory, data transfer
• Thread management

– Device side
• Global memory, memory coalescing
• Shared memory, registers
• Threads, blocks, occupancy
• Arithmetic instructions, control flow

– Final recommendations

• Hands-on: optimizing matrix multiplication

• Break

2

Events

• Events can be asynchronously inserted and then recorded when all tasks
preceding the event have completed

cudaEvent_t start, stop;
float time;

cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start, 0);
kernel<<<grid, threads>>> (d_odata, d_idata, size_x, size_y, NUM_REPS);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop); // in milliseconds

cudaEventDestroy(start);
cudaEventDestroy(stop);

3

Streams

• Streams are used to manage concurrency

• Stream is a sequence of commands that
execute in order
– Created as a stream object

– Used in kernel launch and memory copy
operations

cudaStream_t s;

cudaStreamCreate(&s);

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, s);

kernel<<<grid, block, 0, s>>>(otherData_d);

4

Compute Capability

• Specs and supported features of a given GPU
depend on its compute capability
– 1.0, 1.1, 1.2, 1.3, 2.0

• Before using a feature, it is a good idea to
query the device at run-time to verify that the
required feature is supported

cudaDeviceProp props;

cudaGetDeviceProperties(&props, device);

5

cudaDeviceProp struct

• int canMapHostMemory - Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer

• int clockRate - Clock frequency in kilohertz

• int computeMode - Compute mode

• int deviceOverlap - Device can concurrently copy memory and execute a kernel

• int integrated - Device is integrated as opposed to discrete

• int kernelExecTimeoutEnabled - Specified whether there is a run time limit on kernels

• int major - Major compute capability

• int maxGridSize [3] - Maximum size of each dimension of a grid

• int maxThreadsDim [3] - Maximum size of each dimension of a block

• int maxThreadsPerBlock - Maximum number of threads per block

• size_t memPitch - Maximum pitch in bytes allowed by memory copies

• int minor - Minor compute capability

• int multiProcessorCount - Number of multiprocessors on device

• char name [256] - ASCII string identifying device

• int regsPerBlock - 32-bit registers available per block

• size_t sharedMemPerBlock - Shared memory available per block in bytes

• size_t textureAlignment - Alignment requirement for textures

• size_t totalConstMem - Constant memory available on device in bytes

• size_t totalGlobalMem - Global memory available on device in bytes

• int warpSize - Warp size in threads

• … … … 6

Memory Alignment

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a1,1 a2,1 a3,1 a1,2 a2,2 a3,2 a1,3 a2,3 a3,3

cudaMalloc(&dev_a, m*n*sizeof(float));

Matrix columns are not aligned at 64-bit boundary

a1,1 a2,1 a3,1 a1,2 a2,2 a3,2 a1,3 a2,3 a3,3

cudaMallocPitch(&dev_a, &n, n*sizeof(float), m);

Matrix columns are aligned at 64-bit boundary

n is the allocated (aligned) size for the first dimension (the pitch), given the requested sizes of the two
dimensions.

7

Memory Alignment Example

8

cudaMallocPitch((void**)&devPtr, &pitch, width * sizeof(float), height);

myKernel<<<100, 192>>>(devPtr, pitch);

// device code

__global__ void myKernel(float* devPtr, int pitch)

{

 for (int r = 0; r < height; ++r) {

 float* row = (float*)((char*)devPtr + r * pitch);

 for (int c = 0; c < width; ++c) {

 float element = row[c];

 }

 }

}

Page-locked host memory

• Page-locked (or pinned) memory can be allocated on the
host using cudaMallocHost() or cudaHostAlloc()
subroutines
– Higher PCIe transfer rate can be attained
– By default memory block can be used only by the CPU thread

that created it, but it also can be shared between any CPU
threads when declared with cudaHostAllocPortable flag

– By default pinned memory is cacheable, but it also can be
allocated as write-combining by passing flag
cudaHostAllocWriteCombined
• Does not use L1/L2 CPU cache and is not snooped during PCIe data

transfer = higher PCIe transfer bandwidth
• Very slow when reading from it on the host, thus should only be used

for writing on the host

9

Asynchronous data transfers

• cudaMemcpy() calls are blocking

• cudaMemcpyAsync() calls are non-blocking

– Can be used to overlap computation on the host
and data transfer and computation on the GPU

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a_d);

cpuFunction();

10

Asynchronous data transfers

• When using different streams, it is also
possible to overlap data transfer with the
kernel computation

cudaStreamCreate(&s1);

cudaStreamCreate(&s2);

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, s1);

kernel<<<grid, block, 0, s2>>>(otherData_d);

• Useful for double-buffering

11

Mapped host memory (zero copy)

• A block of page-locked host memory can also be
mapped into the address space of the device by
passing cudaHostAllocMapped flag

float *a_host, *a_device;
…
cudaGetDeviceProperties(&prop, 0);
if (!prop.canMapHostMemory) exit(0);
cudaSetDeviceFlags(cudaDeviceMapHost);

cudaHostAlloc((void **)&a_host, nBytes, cudaHostAllocMapped);
cudaHostGetDevicePointer((void **)&a_device, (void *)a_host, 0);
kernel<<<gridSize, blockSize>>>(a_device);

 12

Concurrent kernel execution

• Some devices with compute capability 2.0 can
execute multiple kernels simultaneously

– Check for concurentKernel property before using
this

• Max number of simultaneous kernels is
currently 4

13

Thread management on the host

• cudaError_t cudaThreadExit (void)

– Exit and clean up from CUDA launches

• cudaError_t cudaThreadSynchronize (void)

– Wait for compute device to finish

kernel<<< dimGrid, dimBlock>>>(d_b, d_a);

cudaThreadSynchronize();

14

GPU memory spaces

• Global memory

– Latency is on the order of several hundred cycles

• On-chip memory

– 2 orders of magnitude lower latency than global memory

– Order of magnitude higher bandwidth than global memory

15

Device

DRAM

local
global

constant
texture

GPU
Multiprocessor

Multiprocessor
Multiprocessor

registers shared
memory

constant and texture caches

Device memory bandwidth

• Theoretical bandwidth

– GTX280 example

• Double data rate (DDR)

• RAM frequency: 1,107 MHz

• Memory interface: 512 bits

• (1,107 x 106 x (512/8) x 2) / 109 = 141.6 GB/s

• Effective bandwidth

– (bytes read + bytes written) / 109 / time

16

Global memory access

• Global memory resides in device memory
• Device memory is accessed via 32-, 64-, or 128-byte memory

transactions
• These memory transactions must be naturally aligned

– 32-, 64-, or 128-byte data segments should be aligned to the memory
address which is a multiple of the corresponding size

• Global memory instructions support read/write word size of 1, 2, 4,
8, or 16 bytes
– If size and alignment requirements are not fulfilled, multiple memory

assess instructions will be generated
– For structures, the size alignment requirements can be enforced by

the compiler using the alignment specifiers __align__(8) or (16)
• struct __align__(8) { float x, y };
• struct __align__(16) { float x, y, z };

17

Coalesced access to global memory

• When a thread executes a global memory access instruction,
memory accesses are coalesced for multiple threads into 32-,
64-, or 128-byte memory transactions
– On devices with compute capability 1.x, global memory requests from

a group of 16 threads (half-warp) are coalesced

– On devices with compute capability 2.0, global memory requests from
a group of 32 threads (warp) are coalesced

– Threads must access the words in memory in sequence, e.g., kth
thread in a group of 16 threads must access kth word

• The size of the words accessed by the threads must be 4, 8, or 16 bytes

– On devices with compute capability 2.0, global memory accesses are
cached.

• Each line in L1 or L2 caches is 128 bytes and maps to a 128-byte aligned
segment in device memory

 18

4-byte word per thread example

19
Figure source: NVIDIA CUDA Programming Guide ver. 3.0

4-byte word per thread example

20
Figure source: NVIDIA CUDA Programming Guide ver. 3.0

4-byte word per thread example

21
Figure source: NVIDIA CUDA Programming Guide ver. 3.0

Misaligned access

• Misalignment results in issuing multiple memory access instructions

• Example kernel

__global__ void offsetCopy(float* A, float* B, int offset)

{

 long int i = blockIdx.x * blockDim.x + threadIdx.x + offset;

 A[i] = B[i];

}

• 2 words offset example

22

Effects of misaligned access

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ch

ie
ve

d
 b

an
d

w
id

th
 (

G
B

/s
)

offset

GTX 280 (1.3)

GTX 480 (2.0)

Tesla T10 (1.3)

23

Strided access

• Strided access results in issuing multiple memory access instructions

• Example kernel

__global__ void strideCopy(float* A, float* B, int stride)

{

 long int i = (blockIdx.x * blockDim.x + threadIdx.x) * stride;

 A[i] = B[i];

}

• Stride 2 example

24

Effects of strided assess

25

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ch

ie
ve

d
 b

an
d

w
id

th
 (

G
B

/s
)

stride

GTX 280 (1.3)

GTX 480 (2.0)

Tesla T10 (1.3)

Local memory

• Resides in the device memory

• Allocated for per-thread access

• Allocated by the compiler to hold automatic
variables when there is an insufficient register
space

• As slow as global memory

26

Constant memory

• Resides in the device memory

• Cached

• As long as all threads in a half-warp read the same value from constant
cache, the read is as fast as from a register

• Access to different addresses from the same half-warp is serialized, thus
cost scales linearly with the number of unique memory locations accessed

• Example to copy host memory to constant memory

__constant__ float constData[256];

float data[256];

cudaMemcpyToSymbol(constData, data, sizeof(data));

27

Texture memory

• Resides in the device memory

• Cached

• Optimized for 2D spatial locality

– Threads of the same warp that read texture
addresses that are close together in 2D will
achieve best performance

– Addressing calculations are performed outside of
the kernel by dedicated units

28

Shared memory

• Resides on-chip, thus much faster (~100x) than
any off-chip memory
– 16 KB per SM on pre-Fermi architecture
– 16 or 48 KB per SM on Fermi architecture

• Divided into equally-sized memory modules
(banks) that can be accessed simultaneously
– Any memory read/write request made to n addresses

that fall into n separate banks will be served
simultaneously

– If any two addresses are from the same memory bank,
there is a bank conflict and the accesses will be
serialized = access penalty

29

Shared memory

• For compute capability 1.x
– 16 banks per SM

– 32-bit wide banks

– A shared memory request for a warp of threads is split into
two accesses, each for a half-warp
• Need to avoid bank conflicts in each half-warp

• For compute capability 2.0
– 32 banks per SM on Fermi architecture

– 32-bit wide banks

– A shared memory request for a warp of threads is not split
• Need to avoid bank conflicts in each warp

30

Register file

• 16KB per SM on compute capability 1.x

• 32 KB per SM on compute capability 2.0

• Registers are partitioned among concurrent
threads scheduled on a given SM
– Compiler and hardware scheduler are in charge of

scheduling the use of registers to avoid bank
conflicts

– When not enough space in the register file, space
will be allocated in the local memory for spill-over
registers = expensive access

31

Dealing with register dependencies

• Register dependency arises when an instruction
uses a result stored in a register written by an
instruction before it
– Latency is ~24 cycles

• To hide this latency, SM should be running a
sufficiently large number of threads in other
warps
– At least 192 threads for compute capability 1.x

– As many as 384 threads for compute capability 2.0
• Registers are dual-issue on compute capability 2.0

32

Threads

• 32 Threads = 1 Warp
– A warp (of threads) executes one common instruction at a

time

• A “thread block” is a collection of warps that run on
the same core and share a partition of local store
– The number of warps in the thread block is configurable
– Threads in a thread block start at the same instruction

address and execute in parallel

• 32 max warps can be active per Warp Scheduler
– 1024 threads active at once per Scheduler
– Actual number of threads managed depends on amount of

memory used per thread

33

Occupancy

• Ratio of the number of active warps per
multiprocessor to the maximum number of
possible active warps

– Low occupancy results in inability to hide device
memory access latency

• Occupancy is influenced by the number of
thread blocks, number of threads per block,
and by the register use

34

Occupancy calculator

35

CUDA GPU Occupancy Calculator

1.) Select Compute Capability (click): 1.3 (Help)

2.) Enter your resource usage:

Threads Per Block 256 (Help)

Registers Per Thread 8

Shared Memory Per Block (bytes) 2048

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor 1024 (Help)

Active Warps per Multiprocessor 32

Active Thread Blocks per Multiprocessor 4

Occupancy of each Multiprocessor 100%

Physical Limits for GPU: 1.3

Threads / Warp 32

Warps / Multiprocessor 32

Threads / Multiprocessor 1024

Thread Blocks / Multiprocessor 8

Total # of 32-bit registers / Multiprocessor 16384

Register allocation unit size 512

Shared Memory / Multiprocessor (bytes) 16384

Warp allocation granularity (for register allocation) 2

Allocation Per Thread Block

Warps 8

Registers 2048

Shared Memory 2048

These data are used in computing the occupancy data in blue

Maximum Thread Blocks Per Multiprocessor Blocks

Limited by Max Warps / Multiprocessor 4

Limited by Registers / Multiprocessor 8

Limited by Shared Memory / Multiprocessor 8

Thread Block Limit Per Multiprocessor highlighted RED

CUDA Occupancy Calculator

Version: 1.5

Copyright and License

Just follow steps 1, 2, and 3 below! (or click here for help)

Click Here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Your chosen resource usage is indicated by the red triangle on the graphs.

My Block Size
256

Max Occupancy

0

8

16

24

32

16 80 144 208 272 336 400 464

M
u

lt
ip

ro
c
e
s
s
o

r
 W

a
rp

 O
c
c
u

p
a
n

c
y

Threads Per Block

Varying Block Size

My Register
Count 8

Max
Occupancy

0

8

16

24

32

0 4 8 12 16 20 24 28 32

M
u

lt
ip

ro
c

e
s

s
o

r
 W

a
rp

 O
c

c
u

p
a

n
c

y

Registers Per Thread

Varying Register Count

My Shared
Memory 2048

Max
Occupancy

0

8

16

24

32

0 1
0
2
4

2
0
4
8

3
0
7
2

4
0
9
6

5
1
2
0

6
1
4
4

7
1
6
8

8
1
9
2

9
2
1
6

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

1
3
3
1
2

1
4
3
3
6

1
5
3
6
0

1
6
3
8
4

M
u

lt
ip

ro
c
e
s
s
o

r
 W

a
rp

 O
c
c
u

p
a
n

c
y

Shared Memory Per Thread

Varying Shared Memory Usage

Threads and blocks

• The number of blocks in a grid should be larger than the number of
multiprocessors
– Each multiprocessor should have at least one block to execute
– Desirable to have multiple active blocks per multiprocessor to avoid

entire multiprocessor waiting on __syncthreads()
– Summary: thousands of grid blocks should be launched

• The number of threads per block should be selected to maximize
the occupancy
– 512 maximum threads per thread block
– Occupancy also depends on the register usage as well
– Threads per block should be a multiple of warp size
– A minimum of 64 threads per block is desirable, but only if there are

multiple concurrent blocks per SM

• Typically some experimentation is needed to find out best
configuration

36

Threads Synchronization

• __syncthreads() synchronizes all threads in a
thread block

– Once all threads have reached this point,
execution resumes normally

– Used to avoid RAW / WAR / WAW hazards when
accessing shared memory

• Should be used in conditional code only if the
conditional is uniform across the entire thread
block

37

Arithmetic instructions

• The hardware is designed for single precision
floating point arithmetic

• Integer division and modulo operations are
particularly costly -> use shift when possible

• Reciprocal square root: use rsqrtf() instead of
1.0f/sqrtf()

• Avoid automatic conversion between double an
float

• Use the fast math libraries when possible, they
start with prepended underscores __

38

Control flow

• Avoid different execution path within the
same warp

– Different execution paths in a single warp will be
serialized

• Help compiler to do branch prediction

– E.g., unroll loops with #pragma unroll

39

Final recommendations

• Select parallel algorithm instead of a sequential
one

• Use the effective bandwidth as a measure of the
optimization benefits

• Minimize data transfer between the host and
device memory

• Ensure coalesced device memory access

• Minimize use of global memory

• Avoid execution path divergence

40

Final recommendations

• Avoid bank conflicts when accessing shared
memory

• Use shared memory to avoid redundant data
access to global memory

• Maintain at least 25% occupancy

• Have at least 32 threads per block

• Use fast math when possible

41

Porting matrix multiplier to CUDA

• cd ../tutorial/src3

• Compile & run CPU version
icc -O3 mmult.c -o mmult
./mmult

1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
...
msec = 2215478 GFLOPS = 0.969

42

43

int main(int argc, char* argv[])
{
 int N = 1024;

 struct timeval t1, t2, ta, tb;
 long msec1, msec2;
 float flop, mflop, gflop;

 float *a = (float *)malloc(N*N*sizeof(float));
 float *b = (float *)malloc(N*N*sizeof(float));
 float *c = (float *)malloc(N*N*sizeof(float));

 minit(a, b, c, N);

 gettimeofday(&t1, NULL);
 mmult(a, b, c, N); // a = b * c
 gettimeofday(&t2, NULL);

 mprint(a, N, 5);

 free(a);
 free(b);
 free(c);

 msec1 = t1.tv_sec * 1000000 + t1.tv_usec;
 msec2 = t2.tv_sec * 1000000 + t2.tv_usec;
 msec2 -= msec1;
 flop = N*N*N*2.0f;
 mflop = flop / msec2;
 gflop = mflop / 1000.0f;
 printf("msec = %10ld GFLOPS = %.3f\n", msec2, gflop);
}

// a = b * c
void mmult(float *a, float *b, float *c, int N)
{
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 for (int i = 0; i < N; i++)
 a[i+j*N] += b[i+k*N]*c[k+j*N];
}

void minit(float *a, float *b, float *c, int N)
{
 for (int j = 0; j < N; j++)
 for (int i = 0; i < N; i++) {
 a[i+N*j] = 0.0f;
 b[i+N*j] = 1.0f;
 c[i+N*j] = 1.0f;
 }
}

void mprint(float *a, int N, int M)
{
 int i, j;

 for (int j = 0; j < M; j++)
 {
 for (int i = 0; i < M; i++)
 printf("%.2f ", a[i+N*j]);
 printf("...\n");
 }
 printf("...\n");
}

for (i = 0; i < n; ++i)
 for (j = 0; j < m; ++j)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

Matrix-matrix multiplication example
(BLAS SGEMM)

- Matrices are stored in column-major order

- For reference, jki-ordered version runs at 1.7 GFLOPS on 3 GHz Intel Xeon
(single core)

for (i = 0; i < n; ++i)
 for (j = 0; j < m; ++j)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

Grid of thread blocks

0

0 1 2 3 4 5

1

0 1 2 3 4 5

2

0 1 2 3 4 5

blockIdx.x

blockDim.x

threadIdx.x

blockIdx.x * blockDim.x +
threadIdx.x

Map this code:

into this (logical) architecture:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

B

C

A=B*C

a1,2=b1,1*c1,2+b1,2*c2,2

for (is = 0; i < n; is+=32)
 for (i = is; i < is+32; ++i)
 for (j = 0; j < m; ++j)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+n*j];

for (i = 0; i < n; ++i)
 for (j = 0; j < m; ++j)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

Strip-mined the stride-1 i loop to SIMD
width of 32

Run the i element as a thread block and
the is strip loop and j loop in parallel

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

for (is = 0; i < n; is+=32)
 for (i = is; i < is+32; ++i)
 for (j = 0; j < m; ++j)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

Parallel (grid) loops and SIMD (thread block)
loop are handled implicitly by the GPU hardware

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

extern "C" __global__ void mmkernel (float* a, float* b, float* c, int n, int m,
int p)
{
 int i = blockIdx.x*32 + threadIdx.x;
 int j = blockIdx.y;
 float sum = 0.0f;
 for (int k = 0; k < p; ++k) sum += b[i+n*k] * c[k+p*j];
 a[i+n*j] = sum;
}

128x4096 grid of thread blocks

Block of 32x1x1 threads

(blockIdx.x, blockIdx.y)

(threadIdx.x)

{
 int i = blockIdx.x*32 + threadIdx.x;
 int j = blockIdx.y;
 float sum = 0.0f;
 for (int k = 0; k < p; ++k)
 sum += b[i+n*k] * c[k+p*j];
 a[i+n*j] = sum;
}

32 threads per block

128 thread blocks

4
0

9
6

 t
h

re
ad

 b
lo

ck
s

dim3 threads (32);
dim3 grid(4096/32, 4096);

Version 1

 int i = blockIdx.x*32 + threadIdx.x;
 int j = blockIdx.y;
 float sum = 0.0f;
 for (int k = 0; k < p; ++k)
 sum += b[i+n*k] * c[k+p*j];
 a[i+n*j] = sum;

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 128x4096
block 32x1x1

msec = 5779620 GFLOPS = 23.780

Version 1

Threads
per block

(SIMD
width)

Grid size performance
(GFLOPS)

Overall kernel

32 128x4096 23.3 24.2 One warp per thread block. Thus, at
most only 8 thread blocks are active
on each multiprocessor, out of 32
max.

64 64x4096 26.0 27.0 If 8 thread blocks are scheduled on
each multiprocessor, we get up to 16
warps, so the multithreading is more
efficient.

128 32x4096 24.5 25.3

256 16x4096 24.9 25.9

Strip-mine k loop and load a strip of c into
the multiprocessor local memory

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];

Version 2

 int tx = threadIdx.x; int i = blockIdx.x*32 + tx; int j = blockIdx.y;
 __shared__ float cb[32];
 float sum = 0.0f;
 for (int ks = 0; ks < p; ks += 32) {
 cb[tx] = c[ks+tx+p*j];
 for (int k = ks; k < ks+32; ++k) sum += b[i+n*k] * cb[k-ks];
 }
 a[i+n*j] = sum;

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 128x4096
block 32x1x1

msec = 4538683 GFLOPS = 30.282

Version 2

Threads
per block

(SIMD
width)

Grid size performance
(GFLOPS)

Overall kernel

32 128x4096 28.5 29.8

64 64x4096 40.4 43.1

128 32x4096 40.5 43.2

256 16x4096 41.2 44.0

Each kernel instance computes 2 values of
the i loop

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];

parfor (is = 0; i < n; is+=64)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];
 a[i+32+n*j] += b[i+32+n*k] * cb[k-ks];

Version 3
 int tx = threadIdx.x; int i = blockIdx.x*64 + tx; int j = blockIdx.y;
 __shared__ float cb[32];
 float sum0 = 0.0f, sum1 = 0.0f;
 for (int ks = 0; ks < p; ks += 32) {
 cb[tx] = c[ks+tx+p*j];
 __syncthreads();
 for (int k = ks; k < ks+32; ++k) { sum0 += b[i+n*k] * cb[k-ks]; sum1 += b[i+32+n*k] * cb[k-ks]; }
 __syncthreads();
 }
 a[i+n*j] = sum0;
 a[i+32+n*j] = sum1;

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 64x4096
block 32x1x1

msec = 3182941 GFLOPS = 43.180

Version 3

Threads
per block

(SIMD
width)

Grid size performance
(GFLOPS)

overall kernel

32 64x4096 40.4 43.1

64 32x4096 40.7 43.4

128 16x4096 40.8 43.6

Threads
per block

(SIMD
width)

Grid size performance
(GFLOPS)

overall kernel

32 32x4096 40.8 43.4

64 16x4096 40.9 43.6

128 8x4096 39.6 42.1

x2

x4

Each kernel instance computes 2 values of
the j loop

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; j+=2)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb0[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 cb1[ks:ks+31]=c[ks+p*(j+1):ks+31+p*(j+1)];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb0[k-ks];
 a[i+32+n*(j+1)] += b[i+32+n*k] * cb1[k-ks];

Version 4
 int tx = threadIdx.x; int i = blockIdx.x*32 + tx; int j = blockIdx.y*2;
 __shared__ float cb0[32], cb1[32];
 float sum0 = 0.0f, sum1 = 0.0f;
 for (int ks = 0; ks < p; ks += 32) {
 cb0[tx] = c[ks+tx+p*j];
 cb1[tx] = c[ks+tx+p*(j+1)];
 __syncthreads();
 for (int k = ks; k < ks+32; ++k) { float rb = b[i+n*k]; sum0 += rb * cb0[k-ks]; sum1 += rb * cb1[k-ks]; }
 __syncthreads();
 }
 a[i+n*j] = sum0;
 a[i+n*(j+1)] = sum1;

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 128x2048
block 32x1x1

msec = 2335358 GFLOPS = 58.851

Version 4

Threads
per block

(SIMD
width)

Grid size performance
(GFLOPS)

overall kernel

32 128x2048 52.7 57.3

64 64x2048 75.2 84.8

128 32x2048 76.2 86.3

Threads
per block

(SIMD
width)

Grid size performance
(GFLOPS)

overall kernel

32 128x1024 92.3 107.4

64 64x1024 131.3 163.8

128 32x1024 134.6 169.1

x2

x4

Bottom line

• It is easy enough to get something to run on a
GPU

• But it is difficult to get it to run fast

– Things to consider

• which algorithm to use; some algorithms are better
suited for GPUs than others

• understand if the kernel is compute-bound or memory
bandwidth bound and optimize it accordingly

