
Developing and Deploying

Advanced Algorithms to Novel

Supercomputing Hardware

Robert J. Brunner1,2, Volodymyr V. Kindratenko2,

and Adam D. Myers1

1) Department of Astronomy

2) National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

rb@astro.uiuc.edu, kindr@ncsa.uiuc.edu, adm@astro.uiuc.edu

National Center for Supercomputing Applications

NCSA Production HPC Systems

• Dell Intel® 64 Linux Cluster [abe]

– Dell blade system with 1,200 PowerEdge 1955 dual socket, quad core compute blades, an

InfiniBand interconnect and 100 TB of storage in a Lustre filesystem

– Peak performance: 88 TF

• Dell Blade system [t3]

– 1,040 dual-core Intel 2.66 GHz processors an InfiniBand interconnect, 4.1 terabytes of total

memory, and a 20 terabyte Lustre filesystem

– Peak performance: 22.1 TF

• Dell Xeon Cluster [tungsten]

– 2,560 Intel IA-32 Xeon 3.2 GHz processors, 3 GB memory/node

– Peak performance: 16.38 TF (9.819 TF sustained)

– Top 500 list debut: #4 (November 2003)

• IBM IA-64 Linux Cluster [mercury]

– 1,774 Intel Itanium 2 1.3/1.5 GHz processors, 4 GB and 12 GB memory/node

– Peak performance: 10.23 TF (7.22 TF sustained)

– Top 500 list debut: #15 (June 2004)

• SGI Altix [cobalt]

– 1,024 Intel Itanium 2 processors

– Peak performance: 6.55 TF (6.1 TF sustained)

– Top 500 list debut: #48 (June 2005)

• IBM pSeries 690 [copper]

– 384 IBM POWER4 p690 processors, 7 with 64 GB/system, 4 with 256 GB/system

– Peak performance: 2 TF (708 GF sustained)

– Top 500 list debut: #99 (June 2003)

National Center for Supercomputing Applications

Source: http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/

HPC Challenges

• The gap between the application performance and the peak system performance

increases

– Few applications can utilize high percentage of microprocessor peak performance, but even

fewer applications can utilize high percentage of the peak performance of a multiprocessor

system

• Computational complexity of scientific applications increases faster than the

hardware capabilities used to run the applications

– Science and engineering teams are requesting more cycles than HPC centers can provide

• I/O bandwidth and clock wall put limits on computing speed

– Computational speed increasing faster than memory or network latency is decreasing

– Computational speed is increasing faster than memory bandwidth

– The processor speed is limited due to leakage current

– Storage capacities increasing faster than I/O bandwidths

• Building and using larger machines becomes more and more challenging

– Increased space, power, and cooling requirements
• ~$1M+ per year in cooling and power costs for moderate sized systems

– Application fault-tolerance becomes a major concern

National Center for Supercomputing Applications

Black Hole Collision Problem

National Center for Supercomputing Applications

1963

Hahn and Lindquist

IBM 7090

One Processor

Each 0.2 MF

3 Hours

1977

Eppley and Smarr

CDC 7600

One Processor

Each 35 MF

5 Hours

1999

Seidel and Suen, et al.

NCSA SGI Origin

256 Processors

Each 500 MF

40 Hours

300X 30,000X

1,800,000,000X

2001

Seidel et al

NCSA Pentium III

256 Processors

Each 1 GF

500,000 Hours total

plus 500,000 hours at NERSC

~200X

Processor speedup is only 5000x

(~50 KW)

Source: http://gladiator.ncsa.uiuc.edu/PDFs/iacat/Pennington_PetascaleSystems_Apr06.pdf

Digit{ized|al} Sky Surveys

From Data Drought to Data Flood

National Center for Supercomputing Applications

1977-1982

First CfA Redshift Survey

spectroscopic observations of

1,100 galaxies

1985-1995

Second CfA Redshift Survey

spectroscopic observations of

18,000 galaxies

Sources: http://www.cfa.harvard.edu/~huchra/zcat/
http://www.sdss.org/

2000-2005

Sloan Digital Sky Survey I

spectroscopic observations of

675,000 galaxies

New Ways of Computing

• General-purpose processors

– Multi-core

• Special-purpose processors

– Field-Programmable Gate Arrays

(FPGAs)

• Digital signal processing, embedded

– Graphics Processing Units (GPUs)

• Desktop graphics accelerators

– Sony/Toshiba/IBM Cell Broadband

Engine

• Game console and digital content delivery

systems

– …
National Center for Supercomputing Applications

High-Performance Reconfigurable

Computing (HPRC)

• Gerald Estrin's idea of “fixed plus

variable structure computer”

– reconfigurable hardware is tailored to

perform a specific task

• as quickly as a dedicated piece of

hardware

– once the task is done, the hardware is

adjusted to do other tasks

– the main processor controls the behavior

of the reconfigurable hardware

• Wikipedia‟s definition

– “Reconfigurable computing is computer

processing with highly flexible computing

fabrics. The principal difference when

compared to using ordinary

microprocessors is the ability to make

substantial changes to the data path itself

in addition to the control flow.”

• Field Programmable Gate Array

(FPGA) is the enabling technology

• IEEE Computer, March 2007

• High-Performance Reconfigurable Computers are

parallel computing systems that contain multiple

microprocessors and multiple FPGAs. In current

settings, the design uses FPGAs as coprocessors that

are deployed to execute the small portion of the

application that takes most of the time—under the 10-

90 rule, the 10 percent of code that takes

90 percent of the execution time.

National Center for Supercomputing Applications

Reconfigurable Computing

Promises

• Higher sustained performance

– exploring inherent parallelism in

algorithms

• spatial parallelism, instruction level

parallelism

– matching computation with data flow

• FPGAs are on a faster „growth‟

curve than CPUs

– Can keep up with the increasing

complexity of scientific applications

• Reduced power requirements as

compared to microprocessor-based

systems

– Larger systems can be built

• Faster execution, better resource

utilization, and lower power

consumption

and Pitfalls

• Current FPGA technology does not

address the needs of scientific

computing community

– Gate count on FPGAs only recently

became sufficient for practical use in

applications with DPFP

– No dedicated FP hardware support

• Software development for RC

systems by computational

scientists still remains not easy

– Software development methodology for

RC is different from software

development methodology for

microprocessor-based systems

National Center for Supercomputing Applications

Our Motivations

• Can Reconfigurable Computing be used to accelerate

computationally intensive applications in Cosmology?

– Speedup of an order of magnitude or more

• Can computational scientists effectively use Reconfigurable

Computing without the need to re-write all their code from

scratch?

– Reuse of legacy code is important

• Can computational scientists effectively use Reconfigurable

Computing without the need to become hardware experts?

– C/Fortran style of code development as opposite to hardware design tools

and hardware description languages

• Is this technology viable today and will it be viable in 5, 10 years

from now?

– Technology development roadmap

– FPGA performance trends vs. multi-core CPU performance trends

National Center for Supercomputing Applications

National Center for Supercomputing Applications

HPRC System Concept Overview

• Microprocessor • Reconfigurable

processor

microprocessor FPGA

memorymemory

common
memory

communication channel (PCI, DIM, HyperTransport, etc.)

disk

SGI Altix 350 with RC100 Blade

dual-Itanium 2

motherboard

1.4 GHz, 4 GB memory

2 microprocessors

memory

NUMALink 4

3.2 GB/s

each direction

dual-blade chassis

RC100 blade 2RC100 blade 1

TIO ASIC

Loader

FPGA

PROM

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

TIO ASIC

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Algorithm FPGA 1

Virtex 4 LX200

Algorithm FPGA 2

Virtex 4 LX200

3.
2

G
B

/s

ea
ch

 d
ire

ct
io

n

3.
2

G
B

/s

ea
ch

 d
ire

ct
io

n

1.
6

G
B

/s

ea
ch

 d
ire

ct
io

n

SCR-6 Reconfigurable Computer

dual-Xeon motherboard
2.8 GHz, 1 GB memory

Memory

SRC Hi-Bar 4-port Switch
Sustained 1.4 GB/s per port with 180 ns latency per tier

SNAP™

2 microprocessors

PCI-X

4.8 GB/s

2400 MB/s eachGPIO

4.8 GB/s

OBM A
(4 MB)

OBM B
(4 MB)

OBM C
(4 MB)

OBM D
(4 MB)

OBM E
(4 MB)

OBM F
(4 MB)

Control FPGA

User FPGA 1
XC2VP100

User FPGA 0
XC2VP100

192

64 6464646464

192

108

64 6464646464

OBM G
(2 MB)

OBM H
(2 MB)

1.4 GB/s1.4 GB/s MAPE®

Reconfigurable
Processor

SRC-6 MAPstation

Two-point Angular Correlation

• TPACF, denoted as (), is the

frequency distribution of angular

separations  between celestial

objects in the interval (,  + )

–  is the angular distance between

two points

• Red Points are, on average,

randomly distributed, black

points are clustered

– Red points: ()=0

– Black points: ()>0

• Can vary as a function of angular

distance,  (blue circles)

– Red: ()=0 on all scales

– Black: () is larger on smaller

scales

National Center for Supercomputing Applications

National Center for Supercomputing Applications

The Method

• The angular correlation function is calculated

using the estimator derived by Landy & Szalay

(1993):

• where DD() and RR() are the autocorrelation

function of the data and random points,

respectively, and DR() is the cross-correlation

between the data and random points.

 
   

 
1

1

21

2

2

















i

R

i

RDD

RR
n

DR
nn

DD
n

National Center for Supercomputing Applications

DD & RR Algorithm: Autocorrelation

distance
bin map

f()

bin

update

i: 0 to N-2 j: i+1 to N-1

N points

D
D

(
),
 R

R
(

)

National Center for Supercomputing Applications

DR Algorithm: Cross-correlation

distance
bin map

f()

bin

update

i: 0 to N-1

j: 0 to N-1

N points

D
R

(
)

National Center for Supercomputing Applications

Microprocessor Code Organization

// compute DD

doCompute{CPU|FPGA}(data, npd, data, npd, 1, DD, binb, nbins);

// loop through random data files

for (i = 0; i < random_count; i++)

{

// compute RR

doCompute{CPU|FPGA}(random[i], npr[i], random[i], npr[i], 1, RRS, binb, nbins);

// compute DR

doCompute{CPU|FPGA}(data, npd, random[i], npr[i], 0, DRS, binb, nbins);

}

// compute w

for (k = 0; k < nbins; k++)

{

w[k] = (random_count * 2*DD[k] - DRS[k]) / RRS[k] + 1.0;

}

Reference C Kernel Implementation

for (i = 0; i < ((autoCorrelation) ? n1-1 : n1); i++)

{

double xi = data1[i].x;

double yi = data1[i].y;

double zi = data1[i].z;

for (j = ((autoCorrelation) ? i+1 : 0); j < n2; j++)

{

double dot = xi * data2[j].x + yi * data2[j].y + * data2[j].z;

// binary search

min = 0; max = nbins;

while (max > min+1)

{

k = (min + max) / 2;

if (dot >= binb[k]) max = k;

else min = k;

};

if (dot >= binb[min]) data_bins[min] += 1;

else if (dot < binb[max]) data_bins[max+1] += 1;

else data_bins[max] += 1;

}

}
National Center for Supercomputing Applications

pi

pj


q0 q1 q2 q3 q4 q5

Kernel Written in MAP C (SRC-6)

// main compute loop

for (i = 0; i < n1; i++) {

pi_x = AL[i]; pi_y = BL[i]; pi_z = CL[i]; // point i

#pragma loop noloop_dep

for (j = 0; j < n2; j++) {

// what bin memory bank to use in this loop iteration

cg_count_ceil_32 (1, 0, j == 0, 3, &bank);

pj_x = DL[j]; pj_y = EL[j]; pj_z = FL[j]; // point j

dot = pi_x * pj_x + pi_y * pj_y + pi_z * pj_z; // dot product

// find what bin it belongs to

select_pri_64bit_32val((dot < bv31), 31, (dot < bv30), 30,

…

(dot < bv02), 2, (dot < bv01), 1, 0, &indx);

// update the corresponding bin count

if (bank == 0) bin1a[indx] += 1;

else if (bank == 1) bin2a[indx] += 1;

else if (bank == 2) bin3a[indx] += 1;

else bin4a[indx] += 1;

}

}
National Center for Supercomputing Applications

Algorithm FPGA 2

OBM D

LS

OBM E OBM F

OBM B OBM COBM A

Algorithm FPGA 1

LS

Kernel Written in Mitrion-C (RC100)

// loop in one data set

(bins, afinal, bfinal) = for (i in <0 .. NPOINTS_1>)

{

(xi, yi, zi, a1, b1) = readpoint(a0, b0, i); // read next point

uint:64[NBINS] binsB = binsA;

ExtRAM a2 = a0;

ExtRAM b2 = b0;

(binsA, a3, b3) = for(j in <0 .. NPOINTS_1>)

{

(xj, yj, zj, a2, b2) = readpoint(a1, b1, j+NPOINTS); // read next point

float:53.11 dot = xi * xj + yi * yj + zi * zj; // compute dot product

int:8 indx = findbin(dot, binb); // find what bin it belongs to

// update bin

binsB = foreach (bin in binsB by ind) if (ind == indx) bin + 1 else bin;

} (binsB, a2, b2);

} (binsA, a3, b3);

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS

Performance on Different Platforms

• ~100,000 data points, 100 random files

National Center for Supercomputing Applications

Measured features/

parameters

SRC-6 host
2.8 GHz Xeon

SRC-6 dual-

MAP

SGI Altix host
1.4 GHz Itanium 2

RC100 blade

CPUs 2 2

FPGAs 4 2

of compute

engines

1 17 2 4

DD time (s) 219.5 3 226.6 49.7

DR+RR time (s) 84,354.3 880.3 47,598.6 4,975.3

Load/convert (s) 20.3 20.7 28.4 27.5

Total (s) 84,594.1 904 47,853.6 5,052.5

Overall

Speedup
1.0

93.5x(1)

52.9x
1.0

9.5x(2)

(1) V. Kindratenko, R. Brunner, A. Myers, Dynamic load-balancing on multi-FPGA systems: a case study,
In Proc. 3rd Annual Reconfigurable Systems Summer Institute - RSSI'07, 2007.

(2) V. Kindratenko, R. Brunner, A. Myers, Mitrion-C Application Development on SGI Altix 350/RC100,
In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines - FCCM'07, 2007.

Scalability Study

• Actual (dual-MAP) • Projected (quad-MAP)

National Center for Supercomputing Applications

µP

Hi-Bar Switch

MAP

C

MAP

E

µP

Hi-Bar Switch

MAP

C

MAP

E

MAP

C

MAP

E

46.5x

79.5x
84.8x 88.9x 92.8x 94.7x 95.8x 96.4x 96.2x

0x

20x

40x

60x

80x

100x

120x

140x

1

10

100

1000

10000

100000

5000 25000 45000 65000 85000

s
p

e
e
d

u
p

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

dataset size

speedup CPU MAP

93.1x

159.1x
169.5x177.9x185.6x189.4x191.6x192.7x192.4x

0x

50x

100x

150x

200x

250x

300x

1

10

100

1000

10000

100000

5000 25000 45000 65000 85000

s
p

e
e
d

u
p

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

dataset size

speedup CPU MAP

First Results Obtained on SRC-6

• SDSS DR5 photometric-

selected Luminous Red

Galaxy sample

– Observed dataset consisting of

1,641,323 points

– 100 random datasets,

1,000,000 points each

• Model

– Error estimation using 10

subsets

• Compute time

– 10.2 days (vs. 980 days on a

single 2.8 GHz Intel Xeon chip)

National Center for Supercomputing Applications

0.001

0.01

0.1

1

0.01 0.1 1 10

ω
(t

h
e

ta
)

theta (degrees)

Lessons Learned

• Porting an existing code to an RC platform is considerably more difficult

than developing a new code

– Requires an in-depth understanding of the code structure and data flow

– Code optimization techniques used in the microprocessor-based implementation are

not applicable for RC implementation

– Data flow schemes used in the microprocessor-based implementation in most cases

are not suitable for RC implementation

• Only few scientific codes can be ported to an RC platform with relatively

minor modifications

– 90% of time is spent while executing 10% of the code

• Vast majority of the codes require significant restructuring in order to be

„portable‟

– No well-defined compute kernel

– Compute kernel is too large to fit on an FPGA

– Compute kernel operates on a small dataset or is called too many times

• function call overhead becomes an issue

National Center for Supercomputing Applications

Lessons Learned

• Effective use of high-level programming languages/tools, such as MAP

C/Carte (SRC-6) and Mitrion-SDK/Mitrion-C (RC100), to develop code for

RC platform requires some limited hardware knowledge

– Memory organization and limitations

• Explicit data transfer and efficient data access

– On-chip resources and limitations

– RC architecture-specific programming techniques

• Pipelining, streams, …

• Most significant code acceleration can be achieved when developing the

code from scratch; code developer then has the freedom to

– structure the algorithm to take advantage of the RC platform organization and

resources,

– select most effective SW/HW code partitioning scheme, and

– setup data formats and data flow graph that maps well into RC platform resources

National Center for Supercomputing Applications

Future Work

• Integrate optimizations into the two-point angular

correlation algorithm

– Algorithmic enhancements

– Tree-data structures

• Extend work to other cosmology algorithms

– Power spectrum

– Higher order correlations

• Extend work to other algorithm classes

– Machine-learning algorithms

• Expand to other special-purpose computing platforms

– Cell/B.E. processor

– NVIDIA G80 GPU

National Center for Supercomputing Applications

Conclusions

• Reconfigurable Computing holds some potential for

accelerating Cosmology applications

– Dual-MAP implementation of the two-point angular correlation

algorithm outperforms a 2.8 GHz CPU by a factor of over 90

• Reuse of legacy code is not easy and is not always

possible

– Experience with porting existing codes to SRC-6 shows that the

code has to be significantly restructured/simplified before it

becomes feasible to port it to SRC-6

• C/Fortran style of code development is possible and is

quite effective with tools such as Carte and Mitrion-C

– Even though it still requires some hardware knowledge of the RC

platform

National Center for Supercomputing Applications

Acknowledgements

• Work funded by NASA grant NNG06GH15G

• SRC Computers, Inc. collaborators

– David Caliga, Dan Poznanovic, Dr. Jeff Hammes, Jon Huppenthal

• An SGI Altix 350 system with an RC100 blade was

kindly made available by SGI

– Special thanks to Matthias Fouquet-Lapar, Tony Galieti, and Dick

Riegner, all from SGI, for their help and support with the SGI

system

• Mitrion SDK for RC100 RASC system was kindly

provided by Mitrionics AB

– Special thanks for Stefan Möhl and Jace Mogill, both from Mitrionics

AB, for their help with Mitrion SDK

National Center for Supercomputing Applications

• When: July 17-20, 2007

• Where: NCSA, Urbana, IL

• What:

– July 17

• Nallatech Training and Users Group

Workshop

• SGI/Mitrionics workshop

• SRC Users Meeting

– July 18

• A keynote by Alan D. George, director of

the National Science Foundation Center

for High-Performance Reconfigurable

Computing (CHREC)

• Poster session

– July 19

• OpenFPGA meeting

– July 18-20

• 22 vendor and academic presentations

• 15 exhibitors

• http://rssi.ncsa.uiuc.edu

National Center for Supercomputing Applications

