

High Performance Computing with Application Accelerators

Volodymyr Kindratenko

Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT)

> National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

A Bit of History

- Application accelerator is not a new concept
 - e.g., Intel C8087 Math Coprocessor

- But it received a renewed interest around 2002 due to the single thread performance stall
 - Frequency scaling became unsustainable with smaller IC feature sizes
 - Instruction-level parallelism (IPL) can go only so far

Accelerators from early 2000s

- Sony Emotion Engine
 - Designed for Sony PS2 game console
 - PS2 compute clusters, such as one at NCSA
- Field-Programmable Gate Arrays (FPGAs)
 - In early 2000s reached size of millions of gates
 - The field of reconfigurable computing emerged
 - FPGA performance growth trends pointed towards outperforming CPUs
- Graphics Processing Units (GPUs) used for General-Purpose computing (GPGPUs)
 - Programmable shaders

Mainstream Accelerators from mid-2000s

- FPGAs
 - Finally large enough for running useful floating point calculations
 - Many vendors offer a variety of products for reconfigurable computing

• Sony/Toshiba/IBM Cell Broadband Engine

- Designed for Sony PS3 game console
- Delivers over 200 GFLOPS in single-precision (SP)

ClearSpeed

- First floating-point accelerator specifically made for high-performance computing
- 25 GFLOPS peak @ 10 Watt power

Application Accelerators Today

- GPUs
 - Dominated by NVIDIA
 - Offer unsurpassed performance for floating-point applications
- IBM PowerXCell 8i
 - Cell/B.E. variant with improved double-precision floating-point support
 - Used in RoadRunner supercomputer

• FPGAs

• CPU socket plug-ins and PCI-based accelerator boards offered by a number of vendors

Why Application Accelerators

Major HPC systems with accelerators

• Nebulae

- NVIDIA Tesla C2050 GPU
- #2 on June 2010 TOP-500 list
- ~2.8 PFLOPS peak, ~1.2 PFLOPS Linpack
- National Supercomputing Centre in Shenzhen, China

RoadRunner

- PowerXCell 8i
- #3 on June 2010 TOP-500 list
- ~1.3 PFLOPS peak, ~1 PFLOPS Linpack
- Los Alamos National Lab, USA

• Tianhe-1

- ATI Radeon HD 4870 GPU
- #7 on June 2010 TOP-500 list
- ~1.2 PFLOPS peak, ~0.5 PFLOPS Linpack
- Chinese National University of Defense Technology, China

NVIDIA Tesla S1070 GPU Computing Server

• 4 T10 GPUs

NVIDIA Tesla GPU Architecture

- 240 streaming processors arranged as 30 streaming multiprocessors
- At 1.3 GHz this provides
 - 1 TFLOPS SP
 - 86.4 TFLOPS DP
- 512-bit interface to off-chip GDDR3 memory
 - 102 GB/s bandwidth

NCSA AC Cluster

AC01-32 nodes

• HP xw9400 workstation

- 2216 AMD Opteron 2.4 GHz dual socket dual core
- 8GB DDR2 in ac04-ac32
- 16GB DDR2 in ac01-03
- PCIe gen 1.0
- Infiniband QDR
- Tesla S1070 1U GPU Computing Server
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
 - 1 per host

AC34-AC41 nodes (New)

Supermicro A+ Server

- Dual six-core AMD Istanbul
- 32 GB DDR2
- PCIe gen 2.0
- QDR IB (32 Gbit/sec)
- 3 Internal ATI Radeon 5870 GPUs

AC Cluster Software Stack

Conventional cluster

- Shared system software
 - Torque / Moab
 - ssh
- Programming tools
 - Matlab
 - Intel compiler
- Other tools
 - mvapich2 MPI (IB)

GPU cluster enhancements

- Shared system software
 - Torque extensions
 - CUDA/OpenCL wrapper

Programming tools

- CUDA C SDK
- OpenCL SDK
- PGI+GPU compiler
- Other tools
 - CUDA memory test
 - Power monitoring

CUDA/OpenCL Wrapper

Basic operation principle

- Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL functions, e.g. {cu|cuda}{Get|Set}Device, clGetDeviceIDs, etc.
- Transparent operation

• Purpose

- Enables controlled GPU device visibility and access, extending resource allocation to the workload manager
- Provides a platform for rapid implementation and testing of HPC relevant features not available in NVIDIA APIs

• Features

- NUMA Affinity mapping
 - Sets thread affinity to CPU core(s) nearest the GPU device
- Shared host, multi-GPU device fencing
 - Only GPUs allocated by scheduler are visible or accessible to user
 - GPU device numbers are virtualized, with a fixed mapping to a physical device per user environment
 - User always sees allocated GPU devices indexed from 0

Host to device Bandwidth Comparison

CUDA/OpenCL Wrapper

Additional utilities

- showgputime utility
 - Shows percent time CUDA linked processes utilized GPU
 - Displays last 15 records (showallgputime shows all)
- wrapper_query utility
 - Within any job environment, get details on what the wrapper library is doing
- Memory Scrubber
 - Independent utility from wrapper, but packaged with it
 - Linux kernel does no management of GPU device memory
 - Must run between user jobs to ensure security between users

Availability

- NCSA/UofI Open Source License
- https://sourceforge.net/projects/cudawrapper/

CUDA Memtest

- 4GB of Tesla GPU memory is not ECC protected
 - Potential for producing erroneous results due to "soft" errors
- Features
 - Full re-implementation of every test included in memtest86
 - Random and fixed test patterns, error reports, error addresses, test specification
 - Email notification
 - Includes additional stress test for software and hardware errors

• Usage scenarios

- Hardware test for defective GPU memory chips
- CUDA API/driver software bugs detection
- Hardware test for detecting soft errors due to non-ECC memory
- Stress test for thermal loading
- Availability
 - NCSA/UofI Open Source License
 - https://sourceforge.net/projects/cudagpumemtest/

Power Profiling

- Goals
 - Accurately record power consumption of GPU and workstation (CPU) for performance per watt efficiency comparison
 - Make this data clearly and conveniently presented to application scientist
 - Accomplish this with cost effective hardware

Solution

- Modify inexpensive power meter to add logging capability
- Integrate monitoring with job management infrastructure
 - submit job with prescribed resource (powermon)
- Use web interface to present data in multiple forms to user

Power Profiling Example

improvement in performance-per-watt

 $e = p/p_a *s$

Application	t (sec)	t_a (sec)	S	<i>p</i> (watt)	p_a (watt)	е
NAMD	6.6	1.1	6	316	681	2.78
VMD	1,465.2	57.5	25.5	299	742	10.48
QMCPACK			61.5	314	853	22.6
MILC	77,324	3,881	19.9	225	555	8.1

Future of Application Accelerators in HPC

- Application accelerators will continue to play a role in HPC
 - Cost, power, and size are the driving forces and application accelerators have an advantage
- HPC clusters with application accelerators will continue to be the dominant architecture
- GPUs will continue to dominate the accelerator market
 - NVIDIA has a GPU product line specifically designed for HPC
- New major deployments are coming
 - NSF Track 2D system, Keeneland
- New accelerator architectures are coming
 - Intel Many Integrated Core (MIC) architecture, AMD Fusion
- We are starting to see more and more HPC applications ported to accelerators

