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Part IV 

• Performance considerations 
– Host side 

• Events, streams, compute capability 
• Host memory, data transfer 
• Thread management 

– Device side 
• Global memory, memory coalescing 
• Shared memory, registers 
• Threads, blocks, occupancy 
• Arithmetic instructions, control flow 

– Final recommendations 

 
• Hands-on: optimizing matrix multiplication 
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Events 

• Events can be asynchronously inserted and then recorded when all tasks 
preceding the event have completed 

 
cudaEvent_t start, stop; 
float time; 
 
cudaEventCreate(&start); 
cudaEventCreate(&stop); 
 
cudaEventRecord(start, 0); 
kernel<<<grid, threads>>> ( d_odata, d_idata, size_x, size_y, NUM_REPS); 
cudaEventRecord(stop, 0); 
cudaEventSynchronize(stop); 
 
cudaEventElapsedTime(&time, start, stop);  // in milliseconds  
 
cudaEventDestroy(start); 
cudaEventDestroy(stop); 
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Streams 

• Streams are used to manage concurrency 

• Stream is a sequence of commands that 
execute in order 
– Created as a stream object 

– Used in kernel launch and memory copy 
operations 
 

cudaStream_t s; 

cudaStreamCreate(&s); 

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, s);  

kernel<<<grid, block, 0, s>>>(otherData_d); 
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Compute Capability 

• Specs and supported features of a given GPU 
depend on its compute capability 
– 1.0, 1.1, 1.2, 1.3, 2.0 

• Before using a feature, it is a good idea to 
query the device at run-time to verify that the 
required feature is supported 

 

cudaDeviceProp props; 

cudaGetDeviceProperties(&props, device); 
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cudaDeviceProp struct 

• int  canMapHostMemory -  Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer 

• int  clockRate  -   Clock frequency in kilohertz 

• int  computeMode  -  Compute mode 

• int  deviceOverlap  - Device can concurrently copy memory and execute a kernel 

• int  integrated -  Device is integrated as opposed to discrete 

• int  kernelExecTimeoutEnabled -  Specified whether there is a run time limit on kernels 

• int  major  -  Major compute capability 

• int  maxGridSize [3]  - Maximum size of each dimension of a grid 

• int  maxThreadsDim [3]  - Maximum size of each dimension of a block 

• int  maxThreadsPerBlock  -  Maximum number of threads per block 

• size_t  memPitch - Maximum pitch in bytes allowed by memory copies 

• int  minor  - Minor compute capability 

• int  multiProcessorCount  - Number of multiprocessors on device 

• char  name [256]  - ASCII string identifying device 

• int  regsPerBlock  - 32-bit registers available per block 

• size_t  sharedMemPerBlock  - Shared memory available per block in bytes 

• size_t  textureAlignment  - Alignment requirement for textures 

• size_t  totalConstMem  - Constant memory available on device in bytes 

• size_t  totalGlobalMem  - Global memory available on device in bytes 

• int  warpSize  - Warp size in threads 
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Memory Alignment 

a1,1 a1,2 a1,3 

a2,1 a2,2 a2,3 

a3,1 a3,2 a3,3 

a1,1 a2,1 a3,1 a1,2 a2,2 a3,2 a1,3 a2,3 a3,3 

cudaMalloc(&dev_a, m*n*sizeof(float)); 

Matrix columns are not aligned at 64-bit boundary 

a1,1 a2,1 a3,1 a1,2 a2,2 a3,2 a1,3 a2,3 a3,3 

cudaMallocPitch(&dev_a, &n, n*sizeof(float), m); 

Matrix columns are aligned at 64-bit boundary 

n is the allocated (aligned) size for the first dimension (the pitch), given the requested sizes of the two 
dimensions. 
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Memory Alignment Example 
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cudaMallocPitch((void**)&devPtr, &pitch, width * sizeof(float), height); 

  

myKernel<<<100, 192>>>(devPtr, pitch);  

 

// device code  

__global__ void myKernel(float* devPtr, int pitch)  

{ 

    for (int r = 0; r < height; ++r) { 

        float* row = (float*)((char*)devPtr + r * pitch); 

        for (int c = 0; c < width; ++c) {  

            float element = row[c];  

        } 

    } 

}  
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Page-locked host memory 

• Page-locked (or pinned) memory can be allocated on the 
host using cudaMallocHost() or cudaHostAlloc() 
subroutines 
– Higher PCIe transfer rate can be attained 
– By default memory block can be used only by the CPU thread 

that created it, but it also can be shared between any CPU 
threads when declared with cudaHostAllocPortable flag 

– By default pinned memory is cacheable, but it also can be 
allocated as write-combining by passing flag 
cudaHostAllocWriteCombined 
• Does not use L1/L2 CPU cache and is not snooped during PCIe data 

transfer = higher PCIe transfer bandwidth 
• Very slow when reading from it on the host, thus should only be used 

for writing on the host 
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Asynchronous data transfers 

• cudaMemcpy() calls are blocking 

• cudaMemcpyAsync() calls are non-blocking 

– Can be used to overlap computation on the host 
and data transfer and computation on the GPU 

 
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);  

kernel<<<grid, block>>>(a_d);  

cpuFunction(); 
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Asynchronous data transfers 

• When using different streams, it is also 
possible to overlap data transfer with the 
kernel computation 

 
cudaStreamCreate(&s1); 

cudaStreamCreate(&s2);  

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, s1);  

kernel<<<grid, block, 0, s2>>>(otherData_d); 

 

• Useful for double-buffering 
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Mapped host memory (zero copy) 

• A block of page-locked host memory can also be 
mapped into the address space of the device by 
passing cudaHostAllocMapped flag 
 

float *a_host, *a_device;  
…  
cudaGetDeviceProperties(&prop, 0);  
if (!prop.canMapHostMemory) exit(0);  
cudaSetDeviceFlags(cudaDeviceMapHost);  
 
cudaHostAlloc((void **)&a_host, nBytes, cudaHostAllocMapped);  
cudaHostGetDevicePointer((void **)&a_device, (void *)a_host, 0);  
kernel<<<gridSize, blockSize>>>(a_device);  
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Concurrent kernel execution 

• Some devices with compute capability 2.0 can 
execute multiple kernels simultaneously 

– Check for concurentKernel property before using 
this 

• Max number of simultaneous kernels is 
currently 4 
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Thread management on the host 

• cudaError_t  cudaThreadExit (void)  

– Exit and clean up from CUDA launches 

 

• cudaError_t  cudaThreadSynchronize (void)  

– Wait for compute device to finish 

 

kernel<<< dimGrid, dimBlock>>>( d_b, d_a ); 

cudaThreadSynchronize(); 
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GPU memory spaces 

• Global memory 

– Latency is on the order of several hundred cycles 

• On-chip memory 

– 2 orders of magnitude lower latency than global memory 

– Order of magnitude higher bandwidth than global memory 
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Device memory bandwidth 

• Theoretical bandwidth 

– GTX280 example 

• Double data rate (DDR) 

• RAM frequency: 1,107 MHz 

• Memory interface: 512 bits 

• (1,107 x 106 x (512/8) x 2) / 109 = 141.6 GB/s 

• Effective bandwidth 

– (bytes read + bytes written) / 109 / time 
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Global memory access 

• Global memory resides in device memory 
• Device memory is accessed via 32-, 64-, or 128-byte memory 

transactions 
• These memory transactions must be naturally aligned 

– 32-, 64-, or 128-byte data segments should be aligned to the memory 
address which is a multiple of the corresponding size 

• Global memory instructions support read/write word size of 1, 2, 4, 
8, or 16 bytes 
– If size and alignment requirements are not fulfilled, multiple memory 

assess instructions will be generated 
– For structures, the size alignment requirements can be enforced by 

the compiler using the alignment specifiers __align__(8) or (16) 
• struct __align__(8) { float x, y }; 
• struct __align__(16) { float x, y, z }; 
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Coalesced access to global memory 

• When a thread executes a global memory access instruction, 
memory accesses are coalesced for multiple threads into 32-, 
64-, or 128-byte memory transactions 
– On devices with compute capability 1.x, global memory requests from 

a group of 16 threads (half-warp) are coalesced 

– On devices with compute capability 2.0, global memory requests from 
a group of 32 threads (warp) are coalesced 

– Threads must access the words in memory in sequence, e.g., kth 
thread in a group of 16 threads must access kth word 

• The size of the words accessed by the threads must be 4, 8, or 16 bytes 

– On devices with compute capability 2.0, global memory accesses are 
cached. 

• Each line in L1 or L2 caches is 128 bytes and maps to a 128-byte aligned 
segment in device memory 
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4-byte word per thread example 
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Figure source: NVIDIA CUDA Programming Guide ver. 3.0 

V. Kindratenko, Introduction to GPU Programming (part IV), December 2010, The American University in Cairo, Egypt 



4-byte word per thread example 
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Figure source: NVIDIA CUDA Programming Guide ver. 3.0 
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4-byte word per thread example 
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Figure source: NVIDIA CUDA Programming Guide ver. 3.0 
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Misaligned access 

• Misalignment results in issuing multiple memory access instructions 

• Example kernel 

 
__global__  void offsetCopy(float* A, float* B, int offset)  

{  

    long int i = blockIdx.x * blockDim.x + threadIdx.x + offset;  

    A[i] = B[i]; 

} 

 

• 2 words offset example 

 

22 
V. Kindratenko, Introduction to GPU Programming (part IV), December 2010, The American University in Cairo, Egypt 



Effects of misaligned access 
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Strided access 

• Strided access results in issuing multiple memory access instructions 

• Example kernel 

 
__global__  void strideCopy(float* A, float* B, int stride)  

{  

    long int i = (blockIdx.x * blockDim.x + threadIdx.x) * stride;  

    A[i] = B[i]; 

} 

 

• Stride 2 example 
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Effects of strided assess 
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Local memory 

• Resides in the device memory 

• Allocated for per-thread access 

• Allocated by the compiler to hold automatic 
variables when there is an insufficient register 
space 

• As slow as global memory 
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Constant memory 

• Resides in the device memory 

• Cached 

• As long as all threads in a half-warp read the same value from constant 
cache, the read is as fast as from a register 

• Access to different addresses from the same half-warp is serialized, thus 
cost scales linearly with the number of unique memory locations accessed 

 

• Example to copy host memory to constant memory 

 

__constant__ float constData[256]; 

float data[256]; 

cudaMemcpyToSymbol(constData, data, sizeof(data)); 
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Texture memory 

• Resides in the device memory 

• Cached 

• Optimized for 2D spatial locality 

– Threads of the same warp that read texture 
addresses that are close together in 2D will 
achieve best performance 

– Addressing calculations are performed outside of 
the kernel by dedicated units 
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Shared memory 

• Resides on-chip, thus much faster (~100x) than 
any off-chip memory 
– 16 KB per SM on pre-Fermi architecture 
– 16 or 48 KB per SM on Fermi architecture 

• Divided into equally-sized memory modules 
(banks) that can be accessed simultaneously 
– Any memory read/write request made to n addresses 

that fall into n separate banks will be served 
simultaneously 

– If any two addresses are from the same memory bank, 
there is a bank conflict and the accesses will be 
serialized = access penalty 
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Shared memory 

• For compute capability 1.x 
– 16 banks per SM 

– 32-bit wide banks 

– A shared memory request for a warp of threads is split into 
two accesses, each for a half-warp 
• Need to avoid bank conflicts in each half-warp 

• For compute capability 2.0 
– 32 banks per SM on Fermi architecture 

– 32-bit wide banks  

– A shared memory request for a warp of threads is not split 
• Need to avoid bank conflicts in each warp 
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Register file 

• 16KB per SM on compute capability 1.x 

• 32 KB per SM on compute capability 2.0 

• Registers are partitioned among concurrent 
threads scheduled on a given SM 
– Compiler and hardware scheduler are in charge of 

scheduling the use of registers to avoid bank 
conflicts 

– When not enough space in the register file, space 
will be allocated in the local memory for spill-over 
registers = expensive access 
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Dealing with register dependencies 

• Register dependency arises when an instruction 
uses a result stored in a register written by an 
instruction before it 
– Latency is ~24 cycles 

• To hide this latency, SM should be running a 
sufficiently large number of threads in other 
warps 
– At least 192 threads for compute capability 1.x 

– As many as 384 threads for compute capability 2.0 
• Registers are dual-issue on compute capability 2.0 
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Threads 

• 32 Threads = 1 Warp 
– A warp (of threads) executes one common instruction at a 

time 

• A “thread block” is a collection of warps that run on 
the same core and share a partition of local store 
– The number of warps in the thread block is configurable 
– Threads in a thread block start at the same instruction 

address and execute in parallel 

• 32 max warps can be active per Warp Scheduler 
– 1024 threads active at once per Scheduler 
– Actual number of threads managed depends on amount of 

memory used per thread  
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Occupancy 

• Ratio of the number of active warps per 
multiprocessor to the maximum number of 
possible active warps 

– Low occupancy results in inability to hide device 
memory access latency 

• Occupancy is influenced by the number of 
thread blocks, number of threads per block, 
and by the register use 
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Occupancy calculator 
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CUDA GPU Occupancy Calculator

1.) Select Compute Capability (click): 1.3 (Help)

2.) Enter your resource usage:

Threads Per Block 256 (Help)

Registers Per Thread 8

Shared Memory Per Block (bytes) 2048

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor 1024 (Help)

Active Warps per Multiprocessor 32

Active Thread Blocks per Multiprocessor 4

Occupancy of each Multiprocessor 100%

Physical Limits for GPU: 1.3

Threads / Warp 32

Warps / Multiprocessor 32

Threads / Multiprocessor 1024

Thread Blocks / Multiprocessor 8

Total # of 32-bit registers / Multiprocessor 16384

Register allocation unit size 512

Shared Memory / Multiprocessor (bytes) 16384

Warp allocation granularity (for register allocation) 2

Allocation Per Thread Block 

Warps 8

Registers 2048

Shared Memory 2048

These data are used in computing the occupancy data in blue

Maximum Thread Blocks Per Multiprocessor Blocks

Limited by Max Warps / Multiprocessor 4

Limited by Registers / Multiprocessor 8

Limited by Shared Memory / Multiprocessor 8

Thread Block Limit Per Multiprocessor highlighted RED

CUDA Occupancy Calculator

Version: 1.5

Copyright and License

Just follow steps 1, 2, and 3 below! (or click here for help)

Click Here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Your chosen resource usage  is indicated by the red triangle on the graphs.
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Shared Memory Per Thread 

Varying Shared Memory Usage 
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Threads and blocks 

• The number of blocks in a grid should be larger than the number of 
multiprocessors 
– Each multiprocessor should have at least one block to execute 
– Desirable to have multiple active blocks per multiprocessor to avoid 

entire multiprocessor waiting on __syncthreads() 
– Summary: thousands of grid blocks should be launched 

• The number of threads per block should be selected to maximize 
the occupancy 
– 512 maximum threads per thread block 
– Occupancy also depends on the register usage as well 
– Threads per block should be a multiple of warp size 
– A minimum of 64 threads per block is desirable, but only if there are 

multiple concurrent blocks per SM 

• Typically some experimentation is needed to find out best 
configuration 
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Threads Synchronization 

• __syncthreads() synchronizes all threads in a 
thread block 

– Once all threads have reached this point, 
execution resumes normally 

– Used to avoid RAW / WAR / WAW hazards when 
accessing shared memory 

• Should be used in conditional code only if the 
conditional is uniform across the entire thread 
block 
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Arithmetic instructions 

• The hardware is designed for single precision 
floating point arithmetic 

• Integer division and modulo operations are 
particularly costly -> use shift when possible 

• Reciprocal square root: use rsqrtf() instead of 
1.0f/sqrtf() 

• Avoid automatic conversion between double an 
float 

• Use the fast math libraries when possible, they 
start with prepended underscores __ 
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Control flow 

• Avoid different execution path within the 
same warp 

– Different execution paths in a single warp will be 
serialized 

• Help compiler to do branch prediction 

– E.g., unroll loops with #pragma unroll 
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Final recommendations 

• Select parallel algorithm instead of a sequential 
one 

• Use the effective bandwidth as a measure of the 
optimization benefits 

• Minimize data transfer between the host and 
device memory 

• Ensure coalesced device memory access 

• Minimize use of global memory 

• Avoid execution path divergence 
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Final recommendations 

• Avoid bank conflicts when accessing shared 
memory 

• Use shared memory to avoid redundant data 
access to global memory 

• Maintain at least 25% occupancy 

• Have at least 32 threads per block 

• Use fast math when possible 
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Porting matrix multiplier to CUDA 

• cd ../tutorial/src5 
 

• Compile & run CPU version 
icc -O3 mmult.c -o mmult 
./mmult 
 

1024.00 1024.00 1024.00 1024.00 1024.00 ... 
1024.00 1024.00 1024.00 1024.00 1024.00 ... 
1024.00 1024.00 1024.00 1024.00 1024.00 ... 
1024.00 1024.00 1024.00 1024.00 1024.00 ... 
1024.00 1024.00 1024.00 1024.00 1024.00 ... 
... 
msec =    2215478   GFLOPS = 0.969 
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int main(int argc, char* argv[]) 
{ 
    int N = 1024; 
     
    struct timeval t1, t2, ta, tb; 
    long msec1, msec2; 
    float flop, mflop, gflop; 
     
    float *a = (float *)malloc(N*N*sizeof(float)); 
    float *b = (float *)malloc(N*N*sizeof(float)); 
    float *c = (float *)malloc(N*N*sizeof(float)); 
 
    minit(a, b, c, N); 
 
    gettimeofday(&t1, NULL); 
    mmult(a, b, c, N);  // a = b * c 
    gettimeofday(&t2, NULL); 
 
    mprint(a, N, 5); 
     
    free(a); 
    free(b); 
    free(c); 
 
    msec1 = t1.tv_sec * 1000000 + t1.tv_usec; 
    msec2 = t2.tv_sec * 1000000 + t2.tv_usec; 
    msec2 -= msec1; 
    flop = N*N*N*2.0f; 
    mflop = flop / msec2; 
    gflop = mflop / 1000.0f; 
    printf("msec = %10ld   GFLOPS = %.3f\n", msec2, gflop); 
} 

// a = b * c 
void mmult(float *a, float *b, float *c, int N)  
{ 
    for (int j = 0; j < N; j++) 
        for (int k = 0; k < N; k++) 
            for (int i = 0; i < N; i++) 
                a[i+j*N] += b[i+k*N]*c[k+j*N]; 
} 
 
 
void minit(float *a, float *b, float *c, int N)  
{ 
    for (int j = 0; j < N; j++) 
        for (int i = 0; i < N; i++) { 
            a[i+N*j] = 0.0f; 
            b[i+N*j] = 1.0f; 
            c[i+N*j] = 1.0f; 
        } 
} 
 
void mprint(float *a, int N, int M) 
{ 
    int i, j; 
     
    for (int j = 0; j < M; j++) 
    { 
        for (int i = 0; i < M; i++) 
            printf("%.2f ", a[i+N*j]); 
        printf("...\n"); 
    } 
    printf("...\n"); 
} 
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for (i = 0; i < n; ++i) 
    for (j = 0; j < m; ++j) 
        for (k = 0; k < p; ++k) 
            a[i+n*j] += b[i+n*k] * c[k+p*j]; 

Matrix-matrix multiplication example 
(BLAS SGEMM) 

- Matrices are stored in column-major order 

 

 

 

 

- For reference, jki-ordered version runs at 1.7 GFLOPS  on 3 GHz Intel Xeon 
(single core) 
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for (i = 0; i < n; ++i) 
    for (j = 0; j < m; ++j) 
        for (k = 0; k < p; ++k) 
            a[i+n*j] += b[i+n*k] * c[k+p*j]; 

Grid of thread blocks 

0 
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blockIdx.x * blockDim.x + 
threadIdx.x  
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0  1   2  3   4  5                     6  7   8  9  10 11               12 13 14 15 16 17 

b1,1 b1,2 

b2,1 b2,2 

b3,1 b3,2 

c1,1 c1,2 c1,3 

c2,1 c2,2 c2,3 

a1,1 a1,2 a1,3 

a2,1 a2,2 a2,3 

a3,1 a3,2 a3,3 

B 

C 

A=B*C 

a1,2=b1,1*c1,2+b1,2*c2,2  
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for (is = 0; i < n; is+=32) 
  for (i = is; i < is+32; ++i) 
    for (j = 0; j < m; ++j) 
      for (k = 0; k < p; ++k) 
        a[i+n*j] += b[i+n*k] * c[k+n*j]; 

for (i = 0; i < n; ++i) 
    for (j = 0; j < m; ++j) 
        for (k = 0; k < p; ++k) 
            a[i+n*j] += b[i+n*k] * c[k+p*j]; 

Strip-mined the stride-1 i loop to SIMD 
width of 32 
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Run the i element as a thread block and 
the is strip loop and j loop in parallel 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
      for (k = 0; k < p; ++k) 
        a[i+n*j] += b[i+n*k] * c[k+p*j]; 

for (is = 0; i < n; is+=32) 
  for (i = is; i < is+32; ++i) 
    for (j = 0; j < m; ++j) 
      for (k = 0; k < p; ++k) 
        a[i+n*j] += b[i+n*k] * c[k+p*j]; 
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Parallel (grid) loops and SIMD (thread block) 
loop are handled implicitly by the GPU hardware 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
      for (k = 0; k < p; ++k) 
        a[i+n*j] += b[i+n*k] * c[k+p*j]; 

extern "C" __global__ void mmkernel (float* a, float* b, float* c, int n, int m, 
int p) 
{ 
    int i = blockIdx.x*32 + threadIdx.x; 
    int j = blockIdx.y; 
    float sum = 0.0f; 
    for (int k = 0; k < p; ++k)  sum += b[i+n*k] * c[k+p*j]; 
    a[i+n*j] = sum; 
} 
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128x4096 grid of thread blocks 

Block of 32x1x1 threads 
 
(blockIdx.x, blockIdx.y) 

(threadIdx.x) 
 
{ 
  int i = blockIdx.x*32 + threadIdx.x; 
  int j = blockIdx.y; 
  float sum = 0.0f; 
  for (int k = 0; k < p; ++k) 
    sum += b[i+n*k] * c[k+p*j]; 
  a[i+n*j] = sum; 
} 

32 threads per block 

128 thread blocks 

4
0

9
6

 t
h

re
ad

 b
lo

ck
s 

dim3 threads (32); 
dim3 grid(4096/32, 4096); 
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Version 1 

    int i = blockIdx.x*32 + threadIdx.x; 
    int j = blockIdx.y; 
    float sum = 0.0f; 
    for (int k = 0; k < p; ++k)   
 sum += b[i+n*k] * c[k+p*j]; 
    a[i+n*j] = sum; 

[kindr@ac31 src5]$ ./mmult_gpu 
  
matrix 4096x4096 
grid 128x4096 
block 32x1x1 
 
msec =    5779620   GFLOPS = 23.780 
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Version 1 

Threads 
per block 

(SIMD 
width) 

Grid size performance 
(GFLOPS) 

Overall kernel 

32 128x4096 23.3 24.2 One warp per thread block. Thus, at 
most only 8 thread blocks are active 
on each multiprocessor, out of 32 
max. 

64 64x4096 26.0 27.0 If 8 thread blocks are scheduled on 
each multiprocessor, we get up to 16 
warps, so the multithreading is more 
efficient. 

128 32x4096 24.5 25.3 

256 16x4096 24.9 25.9 
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Strip-mine k loop and load a strip of c into 
the multiprocessor local memory 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
      for (k = 0; k < p; ++k) 
        a[i+n*j] += b[i+n*k] * c[k+p*j]; 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
       for (ks=0; ks<p; ks+=32) 
          cb[ks:ks+31]=c[ks+p*j:ks+31+p*j]; 
          for (k = ks; k < ks+32; ++k) 
            a[i+n*j] += b[i+n*k] * cb[k-ks]; 
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Version 2 

    int tx = threadIdx.x;    int i = blockIdx.x*32 + tx;   int j = blockIdx.y; 
    __shared__ float cb[32]; 
    float sum = 0.0f; 
    for (int ks = 0; ks < p; ks += 32)  {  
      cb[tx] = c[ks+tx+p*j]; 
      for (int k = ks; k < ks+32; ++k) sum += b[i+n*k] * cb[k-ks];  
    } 
    a[i+n*j] = sum; 

[kindr@ac31 src5]$ ./mmult_gpu  
 
matrix 4096x4096 
grid 128x4096 
block 32x1x1 
 
msec =    4538683   GFLOPS = 30.282 
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Version 2 

Threads 
per block 

(SIMD 
width) 

Grid size performance 
(GFLOPS) 

Overall kernel 

32 128x4096 28.5 29.8 

64 64x4096 40.4 43.1 

128 32x4096 40.5 43.2 

256 16x4096 41.2  44.0  
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Each kernel instance computes 2 values of 
the i loop 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
       for (ks=0; ks<p; ks+=32) 
          cb[ks:ks+31]=c[ks+p*j:ks+31+p*j]; 
          for (k = ks; k < ks+32; ++k) 
            a[i+n*j] += b[i+n*k] * cb[k-ks]; 

parfor (is = 0; i < n; is+=64) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
       for (ks=0; ks<p; ks+=32) 
          cb[ks:ks+31]=c[ks+p*j:ks+31+p*j]; 
          for (k = ks; k < ks+32; ++k) 
            a[i+n*j] += b[i+n*k] * cb[k-ks]; 
            a[i+32+n*j] += b[i+32+n*k] * cb[k-ks]; 
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Version 3 
    int tx = threadIdx.x;   int i = blockIdx.x*64 + tx;   int j = blockIdx.y; 
    __shared__ float cb[32]; 
    float sum0 = 0.0f, sum1 = 0.0f; 
    for (int ks = 0; ks < p; ks += 32) { 
      cb[tx] = c[ks+tx+p*j]; 
      __syncthreads(); 
      for (int k = ks; k < ks+32; ++k) {  sum0 += b[i+n*k] * cb[k-ks];  sum1 += b[i+32+n*k] * cb[k-ks];  } 
      __syncthreads(); 
    } 
    a[i+n*j] = sum0; 
    a[i+32+n*j] = sum1; 

[kindr@ac31 src5]$ ./mmult_gpu  
 
matrix 4096x4096 
grid 64x4096 
block 32x1x1 
 
msec =    3182941   GFLOPS = 43.180 
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Version 3 

Threads 
per block 

(SIMD 
width) 

Grid size performance 
(GFLOPS) 

overall kernel 

32 64x4096 40.4 43.1 

64 32x4096 40.7 43.4 

128 16x4096 40.8  43.6 

Threads 
per block 

(SIMD 
width) 

Grid size performance 
(GFLOPS) 

overall kernel 

32 32x4096 40.8 43.4 

64 16x4096 40.9 43.6 

128 8x4096 39.6  42.1 

x2 

x4 
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Each kernel instance computes 2 values of 
the j loop 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; ++j) 
    SIMDfor (i = is; i < is+32; ++i) 
       for (ks=0; ks<p; ks+=32) 
          cb[ks:ks+31]=c[ks+p*j:ks+31+p*j]; 
          for (k = ks; k < ks+32; ++k) 
            a[i+n*j] += b[i+n*k] * cb[k-ks]; 

parfor (is = 0; i < n; is+=32) 
  parfor (j = 0; j < m; j+=2) 
    SIMDfor (i = is; i < is+32; ++i) 
       for (ks=0; ks<p; ks+=32) 
          cb0[ks:ks+31]=c[ks+p*j:ks+31+p*j]; 
          cb1[ks:ks+31]=c[ks+p*(j+1):ks+31+p*(j+1)]; 
          for (k = ks; k < ks+32; ++k) 
            a[i+n*j] += b[i+n*k] * cb0[k-ks]; 
            a[i+32+n*(j+1)] += b[i+32+n*k] * cb1[k-ks]; 
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Version 4 
    int tx = threadIdx.x;    int i = blockIdx.x*32 + tx;    int j = blockIdx.y*2; 
    __shared__ float cb0[32], cb1[32]; 
    float sum0 = 0.0f, sum1 = 0.0f; 
    for (int ks = 0; ks < p; ks += 32) { 
      cb0[tx] = c[ks+tx+p*j]; 
      cb1[tx] = c[ks+tx+p*(j+1)]; 
      __syncthreads(); 
      for (int k = ks; k < ks+32; ++k) { float rb = b[i+n*k];  sum0 += rb * cb0[k-ks];  sum1 += rb * cb1[k-ks]; } 
      __syncthreads(); 
    } 
    a[i+n*j] = sum0; 
    a[i+n*(j+1)] = sum1; 

[kindr@ac31 src5]$ ./mmult_gpu 
 
matrix 4096x4096 
grid 128x2048 
block 32x1x1 
 
msec =    2335358   GFLOPS = 58.851 
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Version 4 

Threads 
per block 

(SIMD 
width) 

Grid size performance 
(GFLOPS) 

overall kernel 

32 128x2048 52.7 57.3 

64 64x2048 75.2 84.8 

128 32x2048 76.2 86.3 

Threads 
per block 

(SIMD 
width) 

Grid size performance 
(GFLOPS) 

overall kernel 

32 128x1024 92.3 107.4 

64 64x1024 131.3 163.8 

128 32x1024 134.6 169.1 

x2 

x4 
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Bottom line 

• It is easy enough to get something to run on a 
GPU 

• But it is difficult to get it to run fast 

– Things to consider 

• which algorithm to use; some algorithms are better 
suited for GPUs than others 

• understand if the kernel is compute-bound or memory 
bandwidth bound and optimize it accordingly 
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Lab/Homework Exercises 

• Exercise 3: Modify reduction example to use 
zero copy 

• Exercise 4: Port code in src6 to GPU 

– the code computes volume of a sphere of radius r 
using Monte Carlo integration 

– hint: there is not random number generator 
function implemented on GPU  

62 
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