
Introduction to GPU
Programming

Volodymyr (Vlad) Kindratenko
Innovative Systems Laboratory @ NCSA

Institute for Advanced Computing
Applications and Technologies (IACAT)

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Part III

• CUDA C and CUDA API

• Hands-on: reduction kernel

– Reference implementation

– GPU port

2

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

CUDA C

• CUDA C extends standard C as follows
– Function type qualifiers to specify whether a function

executes on the host or on the device

– Variable type qualifiers to specify the memory
location on the device

– A new directive to specify how a kernel is executed on
the device

– Four built-in variables that specify the grid and block
dimensions and the block and thread indices

– Built-in vector types derived from basic integer and
float types

3

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Built-in Vector Types

4

Vector types derived from basic
integer and float types

• char1, char2, char3, char4
• uchar1, uchar2, uchar3, uchar4
• short1, short2, short3, short4
• ushort1, ushort2, ushort3, ushort4
• int1, int2, int3, int4
• uint1, uint2, uint3 (dim3), uint4
• long1, long2, long3, long4
• ulong1, ulong2, ulong3, ulong4
• longlong1, longlong2
• float1, float2, float3, float4
• double1, double2

They are all structures, like this:

typedef struct {
 float x,y,z,w;
} float4;

They all come with a constructor
function in the form make_<type
name>, e.g.,

int2 make_int2(int x, int y);

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

• dim3 dimBlock(width, height);

• dim3 dimGrid(10); // same as dimGrid(10,0,0)

• myKernel<<<dimGrid, dimBlock>>>();

5

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Built-in Variables

6

variable type description

gridDim dim3 dimensions of the grid

blockID unit3 block index within the grid

blockDim dim3 dimensions of the block

threadIdx uint3 thread index within the block

warpSize int warp size in threads

It is not allowed to take addresses of any of the built-in variables
It is not allowed to assign values to any of the built-in variables

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

myKernel<<<10, 32>>>();

__global__ void myKernel()
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 C[i] = A[i] + B[i];
}

• here

– gridDim.x is 10
– blockDim.x is 32

7

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Variable Type Qualifiers

8

Memory Scope Lifetime

__device__ int GlobalVar; global grid application

__device__ __shared__ int SharedVar; shared block block

__device__ __constant__ int ConstantVar; constant grid application

volatile int GlobarVar or SharedVar;

__shared__ and __constant__ variables have implied static storage
__device__, __shared__ and __constant__ variables cannot be defined using
external keyword
__device__ and __constant__ variables are only allowed at file scope
__constant__ variables cannot be assigned to from the devices, they are initialized
from the host only
__shared__ variables cannot have an initialization as part of their declaration

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

__global__ void myKernel()

{

 __shared__ float shared[32];

 __device__ float device[32];

 shared[threadIdx.x] = device[threadIdx.x];

}

9

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

__global__ void myKernel()
{
 extern __shared__ int s_data[];

 s_data[threadIdx.x] = …
}

main()
{
 int sharedMemSize = numThreadsPerBlock * sizeof(int);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(numThreadsPerBlock);
 myKernel <<< dimGrid, dimBlock, sharedMemSize >>>();
}

10

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Function Type Qualifiers

11

host host __host__ float HostFunc()

host device __global__ void KernelFunc()

device device __device__ float DeviceFunc()

Only callable

from the:

Executed

on the:

__device__ and __global__ functions do not support recursion, cannot declare
static variables inside their body, cannot have a variable number of arguments
__device__ functions cannot have their address taken
__host__ and __device__ qualifiers can be used together, in which case the
function is compiled for both
__global__ and __host__ qualifiers cannot be used together
__global__ function must have void return type, its execution configuration
must be specified, and the call is asynchronous

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

__device__ int get_global_index(void)

{

 return blockIdx.x * blockDim.x + threadIdx.x;

}

__global__ void myKernel(int *array)

{

 int index = get_global_index();

}

main()

{ …

 myKernel<<<gridSize, blockSize>>>(gArray);

… }

12

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Execution Configuration

13

Function declared as

__global__ void kernel(float* param);

must be called like this:

kernel<<<Dg, Db, Ns, S>>>(param);

where
• Dg (type dim3) specifies the dimension and size of the grid, such that Dg.x*Dg.y equals
the number of blocks being launched;
• Db (type dim3) spesifies the dimension abd size of each block of threads, such that
Db.x*Db.y*Db.z equals the number of threads per block;
• optional Ns (type size_z) specifies the number of bytes of shared memory dynamically
allocated per block for this call in addition to the statically allocated memory
• optional S (type cudaStream_t) specifies the stream associated with this kernel call

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Intrinsic Functions

14

Supported on the device only

Start with __, as in __sinf(x)

End with
_rn (round-to-nearest-even rounding mode)
_rz (round-towards-zero rounding mode)
_ru (round-up rounding mode)
_rd (round-down rounding mode)
as in __fadd_rn(x,y);

There are mathematical (__log10f(x)), type conversion (__int2float_rn(x)),
type casting (__int_as_float(x)), and bit manipulation (__ffs(x)) functions

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

__global__ void myKernel(float *a1, float *a2)

{

 int index = blockIdx.x * blockDim.x + threadIdx.x;

 a1[index] = sin(a1[index]);

 // faster, but less precise than sin()

 a2[index] = __sin_rn(a2[index]);

}

15

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Synchronization and Memory Fencing
Functions

16

function description

void __threadfence() wait until all global and shared memory
accesses made by the calling thread become
visible to all threads in the device for global
memory accesses and all threads in the thread
block for shared memory accesses

void

__threadfence_block()
Waits until all global and shared memory
accesses made by the calling thread become
visible to all threads in the thread block

void __syncthreads() Waits until all threads in the thread block have
reached this point and all global and shared
memory accesses made by these threads
become visible to all threads in the block

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

__global__ void myKernel(float *a1, float *a2)

{

 int index = blockIdx.x * blockDim.x + threadIdx.x;

 a1[index] = a1[index] + a2[index];

 __syncthreads();

 a2[index] = a1[blockDim.x-index-1];

}

17

Thread Block

__syncthreads()

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Atomic Functions

18

An atomic function performs read-modify-write atomic operation on one 32-bit or one
64-bit word residing in global or shared memory. The operation is atomic in the sense
that it is guaranteed to be performed without interference from other threads.

function Description

atomicAdd() new = old + val

atomicSub() new = old – val

atomicExch() new = val

atomicMin() new = min(old, val)

atomicMax() new = max(old, val)

atomicInc() new = ((old >= val) ? 0 : (old+1))

atomicDec() new = (((old==0) | (old > val)) ? val : (old-1))

atomicCAS() new = (old == compare ? val : old)

Atomic{And, Or, Xor}() new = {(old & val), (old | val), (old^val)}

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

__shared__ totalSum;

if (threadIdx.x == 0) totalSum = 0;

__syncthreads();

int localVal = pValues[blockIdx.x * blockDim.x + threadIdx.x];

atomicAdd(&totalSum, 1);

__syncthreads();

19

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Device Management

20

function description

cudaGetDeviceCount() Returns the number of compute-capable
devices

cudaGetDeviceProperties() Returns information on the compute
device

cudaSetDevice() Sets device to be used for GPU execution

cudaGetDevice() Returns the device currently being used

cudaChooseDevice() Selects device that best matches given
criteria

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Device Management Example

21

void cudaDeviceInit() {
 int devCount, device;
 cudaGetDeviceCount(&devCount);
 if (devCount == 0) {
 printf("No CUDA capable devices detected.\n");
 exit(EXIT_FAILURE);
 }
 for (device=0; device < devCount; device++) {
 cudaDeviceProp props;
 cudaGetDeviceProperties(&props, device);
 // If a device of compute capability >= 1.3 is found, use it
 if (props.major > 1 || (props.major == 1 && props.minor >= 3)) break;
 }
 if (device == devCount) {
 printf("No device above 1.2 compute capability detected.\n");
 exit(EXIT_FAILURE);
 }
 else cudaSetDevice(device);
}

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Memory Management

22

function description

cudaMalloc() Allocates memory on the GPU

cudaMallocPitch() Allocates memory on the GPU device for 2D
arrays, may pad the allocated memory to
ensure alignment requirements

cudaFree() Frees the memory allocated on the GPU

cudaMallocArray() Allocates an array on the GPU

cudaFreeArray() Frees an array allocated on the GPU

cudaMallocHost() Allocates page-locked memory on the host

cudaFreeHost() Frees page-locked memory in the host

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Memory Management (Cont.)

23

function description

cudaMemset() Initializes or sets GPU memory to a value

cudaMemCpy() Copies data between host and the device

cudaMemcpyToArray()

cudaMemcpyFromArray()

cudaMemcpyArrayToArray()

cudaMemcpyToSymbol()

cudaMemcpyFromSymbol()

cudaGetSymbolAddress() Finds the address associated with a CUDA
symbol

cudaGetSymbolSize() Finds the size of the object associated with
a CUDA symbol

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example

main()

{ …

float *devPtrA, *devPtrB;

cudaMalloc((void**)&devPtrA, N * sizeof(float));

cudaMemcpy(devPtrA, A, N * sizeof(float), cudaMemcpyHostToDevice);

cudaMalloc((void**)&devPtrB, N * sizeof(float));

cudaMemset(evPtrB, 0, N * sizeof(float));

// call kernel

myKernel<<<…>>>(devPtrA, devPtrB, N);

cudaMemcpy(B, devPtrB, N * sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(devPtrA);

cudaFree(devPtrB);

… } 24

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Error Handling

25

All CUDA runtime API functions return an error code. The runtime maintains
an error variable for each host thread that is overwritten by the error code
every time an error concurs.

function description

cudaGetLastError() Returns error variable and resets it to
cudaSuccess

cudaGetErrorString() Returns the message string from an error
code

cudaError_t err = cudaGetLastError();
if (cudaSuccess != err) {
 fprintf(stderr, "CUDA error: %s.\n", cudaGetErrorString(err));
 exit(EXIT_FAILURE);
}

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Sum reduction kernel example

• Source is in ~/tutorial/src4

– sum.c – reference C implementation

– makefile – make file

– sum.cu.reference – CUDA implementation for
reference

26

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Sum reduction

int main(int argc, char **argv)

{

 int i, N = 2097152; // vector size

 double *A, s = 0.0f;

 A = (double*)malloc(N * sizeof(double));

 // generate random data

 for (i = 0; i < N; i++)

 A[i] = (double)rand()/RAND_MAX;

 s = sum(A, N); // call compute kernel

 printf("sum=%.2f\n", s);

 free(A); // free allocated memory

}

27

𝑆 = 𝑣𝑘

𝑛

𝑘=0

double sum(double* v, int n)
{
 int i;
 double s = 0.0f;

 for (i = 0; i < n; i++)
 s += v[i];

 return s;
}

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

28

𝑆 = 𝑣𝑘

15

𝑘=0

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

S

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

29

v8 v9 v10 v11 v12 v13 v14 v15

v0 v1 v2 v3 v4 v5 v6 v7

+ + + + + + + +

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

v0 v1 v2 v3 v4 v5 v6 v7

N/2 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 4

th
re

ad
 5

th
re

ad
 6

th
re

ad
 8

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

30

v4 v5 v6 v7

v0 v1 v2 v3

+ + + +

↓ ↓ ↓ ↓

v0 v1 v2 v3

N/4 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 4

th
re

ad
 5

th
re

ad
 6

th
re

ad
 8

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

31

v3 v4

v0 v1

+ +

↓ ↓

v0 v1

N/8 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 4

th
re

ad
 5

th
re

ad
 6

th
re

ad
 8

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

32

v1

v0

+

↓

S

N/16 additions
can be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 4

th
re

ad
 5

th
re

ad
 6

th
re

ad
 8

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

GPU kernel for N<=1024

33

__global__ void sum (double *v)
{
 unsigned int t = threadIdx.x;
 unsigned int stride;

 for (stride = blockDim.x >> 1; stride > 0; stride >>= 1)
 {
 __syncthreads();
 if (t < stride)
 v[t] += v[t+stride];
 }
}

sum<<<1, N/2>>>(a);

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

The rest of the code

 double *devPtrA; // allocate memory, copy data
 cudaMalloc((void**)&devPtrA, N * sizeof(double));
 cudaMemcpy(devPtrA, A, N * sizeof(double), cudaMemcpyHostToDevice);

 sum<<<1, N/2>>>(devPtrA); // call compute kernel

 cudaError_t err = cudaGetLastError(); // check for errors
 if (cudaSuccess != err)
 {
 fprintf(stderr, "CUDA error: %s.\n", cudaGetErrorString(err));
 exit(EXIT_FAILURE);
 }

 // get results, free memory
 cudaMemcpy(&s, devPtrA, sizeof(double), cudaMemcpyDeviceToHost);
 cudaFree(devPtrA);

34

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Problems with this implementation

• N <= 1024

– A thread block may not have more than 512
threads

• Inefficient

– Data is stored in global memory which has very
high access latency

• N must be a power of 2

35

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Block 1 Block 0

Expanding to multiple thread blocks

36

v8 v9 v10 v11 v12 v13 v14 v15

v0 v1 v2 v3 v4 v5 v6 v7

+ + + + + + + +

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

v0 v1 v2 v3 v4 v5 v6 v7

N/2 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Block 1 Block 0

Eliminating global memory access latency

37

v8 v9 v10 v11 v12 v13 v14 v15

v0 v1 v2 v3 v4 v5 v6 v7

+ + + + + + + +

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

s0 s1 s2 s3 s0 s1 s2 s3

N/2 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

Store partial sums
in the per-block
shared memory

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Block 1 Block 0

Expanding to multiple thread blocks

38

s2 s3 s2 s3

s0 s1 s0 s1

+ + + +

↓ ↓ ↓ ↓

s0 s1 s0 s1

N/4 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Block 1 Block 0

Expanding to multiple thread blocks

39

s1 s1

s0 s0

+ +

↓ ↓

v0 v1

N/8 additions can
be done
independently

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

th
re

ad
 0

th
re

ad
 1

th
re

ad
 2

th
re

ad
 3

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Final sum reduction kernel

40

__global__ void sum(double *v)
{
 extern double __shared__ sd[];
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

 sd[tid] = v[i] + v[i+blockDim.x];
 __syncthreads();

 for (unsigned int s = blockDim.x/2; s > 0; s >>= 1)
 {
 if (tid < s)
 sd[tid] += sd[tid + s];
 __syncthreads();
 }

 if (tid == 0) v[blockIdx.x] = sd[0];
}

perform first level of
reduction, reading from
global memory, writing to
shared memory

do reduction in shared memory

write result for this block to global mem

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Are we done yet?

• We started with this

• And ended with this

• where v0 and v1 are partial sums computed by individual
thread blocks, stored in global memory, and they still need
to be added

• The final addition can be done by running the same kernel
on this reduced data set

41

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

v0 v1

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Modified host code

 int threads = 64;

 int old_blocks, blocks = N / threads / 2;

 blocks = (blocks == 0) ? 1 : blocks;

 old_blocks = blocks;

 while (blocks > 0) // call compute kernel

 {

 sum<<<blocks, threads, threads*sizeof(double)>>>(devPtrA);

 old_blocks = blocks;

 blocks = blocks / threads / 2;

 };

 if (blocks == 0 && old_blocks != 1) // final kernel call, if still needed

 sum<<<1, old_blocks/2, old_blocks/2*sizeof(double)>>>(devPtrA);

42

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Example run

• [kindr@ac src4]$./sum_cpu
• Running CPU sum for 2097152 elements
• sum=1048443.09
• sec = 0.006771 GFLOPS = 0.309

• [kindr@ac src4]$./sum_gpu
• Running GPU sum for 2097152 elements
• Grid/thread dims are (16384), (64)
• Grid/thread dims are (128), (64)
• Grid/thread dims are (1), (64)
• sum=1048443.09
• sec = 0.000389 GFLOPS = 5.391

43

2,097,152 values

16,384 values

128 values

1 value

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

Lab/Homework Exercises

• Exercise 2: Modify reduction example to
eliminate multiple calls to the kernel

– hint: use atomic add

44

V. Kindratenko, Introduction to GPU Programming (part III), December 2010, The American University in Cairo, Egypt

