Introduction to GPU
Programming

Volodymyr (VLlad) Kindratenko

Innovative Systems Laboratory @ NCSA

Institute for Advanced Computing
Applications and Technologies (IACAT)

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Part |l

* GPU programing model
e Hands-on: Mandelbrot set fractal renderer

— Reference implementation
— GPU implementation

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

CUDA Programming Model

A CUDA kernel is executed by

an array of threads

— All threads run the same code (SPMD)

— Each thread has an ID that it uses
to compute memory addresses and

make control decisions
 Threads are arranged as a grid of thread blocks

— Threads within
a block have access
to a segment of
shared memory

Grid

threadID

MM

float x = input[threadID];
float y = func(x);
output[threadID] = y;

AN

Thread Block O

S8

Thread Block 1

S5

Thread Block N-1

S5

Shared memory

Shared memory

Shared memory

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Kernel Invocation Syntax

grid & thread block dimensionality
vecAdd<<<32,512>>>(devPtrA, devPtrB, devPtrC);

L\

(<

Grid [I
é—%?%g?é% ;T%?%g?é; éh%e;?gé?é
Shared memory Shared memory Shared memory

int i = blockldx.x * blockDim.x + threadldx.x;

block ID within a grid number of threads per block thread ID within a thread block

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Mapping Threads to the Hardware

* Blocks of threads are transparently * Blocks must be independent
assigned to SMs — Any possible interleaving of blocks
— A block of threads executes on one should be valid
SM & does not migrate — Blocks may coordinate but not
— Several blocks can reside synchronize
concurrently on one SM — Thread blocks can run in any order

Block 0 Block 1
/ Block 2 Block 3 \
Block 0 Block 1 Block 4 Block 5

Block 6 Block 7 Block O Block 1 @ Block 2 Block 3

time
Block 2 | Block 3
Block 4 Block5 @ Block6 @ Block 7

Block 4 | Block 5
Each block can execute in any
Block 6 Block 7 order relative to other blocks.

v

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

CUDA Programming Model

Host Device

 Akernelis executed as a |
grid of thread blocks erd 1

. Block Block Block
— girrlr?e(rifc itc))lr?zglks can be 1 or 2- Kerlnel > oo | o 1 56

— Thread blocks can be 1, 2, or | Bt B
3-dimensional , a

* Different kernels can have Gd2
different grid/block i il

configuration emel T 2

* Threads from the same “Block (1, 1) =
block have access to a
shared memory and their
execution can be
synchronized

6
V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt Slide is courtesy of NVIDIA

GPU Memory Hierarchy

* Global (device) memory
— Accessible by all threads as well as host (CPU)
— Data lifetime is from allocation to deallocation

Device O
memory

Host memory cudaMemcpy()

Device 1
memory

V. Kindratenko, Introduction to GPU Programming (part 1), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

* Global (device) memory

Kernel O
i-r%gd Blocéog g—%gd Blocélg ggg BOCk§N§

Kernel 1
Thread Block 0 Thread Block 1 Thread Block N-1

e

&

R

V. Kindratenko, Introduction to GPU Programming (part 1), December 2010, The American University in Cairo, Egypt

Per-device
Global
Memory

GPU Memory Hierarchy

* Local storage * Shared memory
— Each thread has own local — Each thread block has own
storage shared memory
— Mostly registers (managed by * Accessible only by threads
the compiler) within that block
— Data lifetime = thread lifetime — Data lifetime = block lifetime

Thread Block

Per-block
Per-thread

shared

local memory memory

V. Kindratenko, Introduction to GPU Programming (part 1), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

e 1D grid

—2t
* 1D b
— 2t

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

hread blocks

ock

nreads

Grid of 2 thread blocks

block 0

block 1

Shared memory

Shared memory

a A

registers registers

3 A}
\ 4 v

a a

registers

registers

3
\ 4

)

A 4

thread O thread 1

thread O thread 1

Global memory

Constant memory

10

GPU Memory Hierarchy

Host

CPU

chipset

DRAM

DRAM

local
global

constant
texture

].

Device

GPU

NultinrAarncenr

Multiprocessor

registers

shared

memory

constant and texture caches

m_

Register On-chip One thread Thread
Local Off-chip No R/W One thread Thread
Shared On-chip N/A R/W All threads in a block Block
Global Off-chip No R/W All threads + host Application
Constant Off-chip Yes R All threads + host Application
Texture Off-chip Yes R All threads + host Application

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Porting Mandelbrot set fractal
renderer to CUDA

e Source isin ~/tutorial/src2
— fractal.c — reference C implementation
— Makefile — make file

— fractal.cu.reference — CUDA implementation for
reference

V. Kindratenko, Introduction to GPU Programming (part Il), December 2010, The American University in Cairo, Egypt

Getting started

* cd tutorial/src2
* make cpu

o ./fractal_cpu

* make convert

e copy fractal.bmp to your desktop
* display fractal.bmp on your desktop

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Reference C Implementation

void makefractal_cpu(unsigned char *image, int width, int height, double xupper,
double xlower, double yupper, double ylower)

{

intx,y;

double xinc = (xupper - xlower) / width;
double yinc = (yupper - ylower) / height;

for (y = 0; y < height; y++)

{
for (x = 0; x < width; x++)
{
image[y*width+x] = iter((xlower + x*xinc), (ylower + y*yinc));
}
}

}

14
V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Reference C Implementation

inline unsigned char iter(double a, double b)
{

unsigned char i =0;

doublec x=0,c_y=0;

double c_x_tmp, c_y_tmp;

double D =4.0;

while ((c_x*c_x+c_y*c_y < D) && (i++ < 255))
{

c X tmp=cx*cx-cy*cy,

cy tmp=2*c.y*c x

C XxX=a+c x _tmp;

cy=b+cy tmp;
}

return i;

The Mandelbrot set is
generated by iterating complex
function z2 + ¢, where c is a
constant:

z,=(zp)%+cC
z,=(z)*+cC
z;=(z,)°+cC

and so forth. Sequence z,, z,,
Z,,... Is called the orbit of z,
under iteration of z% + ¢c. We
stop iteration when the orbit
starts to diverge, or when a
maximum number of iterations
is done.

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

CUDA Kernel Implementation

image, irtwidth-intheight-double

int x = blockldx.x;
int y = blockldx.y;

int width = gridDim.x;
int height = gridDim.y;

double xupper=-0.74624, xlower=-0.74758, yupper=0.10779, ylower=0.10671;

double xinc = (xupper - xlower) / width;
double yinc = (yupper - ylower) / height;

image[y*width+x] = iter((xlower + x*xinc), (ylower + y*yinc));

16
V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

CUDA Kernel Implementation

irHne _ device__ unsigned char iter(double a, double b)
{

unsigned char i = 0;

doublec x=0,c_y=0;

double c_x_tmp, c_y_tmp;

double D =4.0;

while ((c_x*c_x+c_y*c_y < D) && (i++ < 255))
{

c X tmp=cx*cx-cy*cy,

cy tmp=2*cy*c x

C XxX=a+c x _tmp;

cy=b+cy tmp;
}

return i;

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Host Code

int width = 1024;

int height = 768,

unsigned char *image = NULL;
unsigned char *devimage;

image = (unsigned char*)malloc(width*height*sizeof(unsigned char));
cudaMalloc((void**)&devimage, width*height*sizeof(unsigned char));

dim3 dimGrid(width, height);
dim3 dimBlock(1);

makefractal_gpu<<<dimGrid, dimBlock>>>(devimage);
cudaMemcpy(image, devimage, width*height*sizeof(unsigned char), cudaMemcpyDeviceToHost);

free(image);
cudaFree(devimage);

18
V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

* xupper=-0.74624
* xlower=-0.74758
* yupper=0.10779
 vylower=0.10671

e CPUtime: 2.27 sec
e GPU time: 0.29 sec

Few Examples

* Xxupper=-0.754534912109
* xlower=-.757077407837

* yupper=0.060144042969
* vylower=0.057710774740

e CPU time: 1.5 sec
e GPUtime: 0.25 sec

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

19

Lab/Homework Exercises

* Exercise 1: Modify fractal code to improve
efficiency

— hint: launch multiple threads per block

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

Documentation

* NVIDIA’s documentation
* http://developer.nvidia.com/object/gpucomputing.html
— Programming Guide
— Best Practices Gide
— Reference Manual

e CUDA CSDK Code Samples
— http://developer.nvidia.com/object/cuda_3 2 downloads.html
* Books

— David Kirk, Wen-mei W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann, 2010

— Jason Sanders, Edward Kandrot, CUDA by Example: An
Introduction to General-Purpose GPU Programming, Addison-
Wesley, 2010

V. Kindratenko, Introduction to GPU Programming (part ll), December 2010, The American University in Cairo, Egypt

