
Accelerating Scientific Applications

with High-Performance

Reconfigurable Computing (HPRC)

Volodymyr V. Kindratenko

Innovative Systems Laboratory (ISL)

National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign (UIUC)

kindr@ncsa.uiuc.edu

National Center for Supercomputing Applications

Presentation Outline

• Motivation

• Reconfigurable computing technology background

– FPGA, dataflow graph, FPGA “code” design cycle, HPRC

systems/design flow

• HPRC Application Design Issues

– SW/HW code partitioning, code transformations, performance

measurements, load-balancing

• HPC Application examples

– Molecular dynamics

– Cosmology

• Conclusions

National Center for Supercomputing Applications

NCSA Production HPC Systems

• Dell Intel® 64 Linux Cluster [abe]

– Dell blade system with 1,200 PowerEdge 1955 dual socket, quad core compute blades, an

InfiniBand interconnect and 100 TB of storage in a Lustre filesystem.

– Peak performance: 88.3 TF

– Top 500 list debut: #8 (June 2007)

• Dell Blade system [t3]

– 1,040 dual-core Intel 2.66 GHz processors an InfiniBand interconnect, 4.1 terabytes of total

memory, and a 20 terabyte Lustre filesystem.

– Peak performance: 22.1 TF

• Dell Xeon Cluster [tungsten]

– 2,560 Intel IA-32 Xeon 3.2 GHz processors, 3 GB memory/node

– Peak performance: 16.38 TF (9.819 TF sustained)

– Top 500 list debut: #4 (November 2003)

• IBM IA-64 Linux Cluster [mercury]

– 1,774 Intel Itanium 2 1.3/1.5 GHz processors, 4 GB and 12 GB memory/node

– Peak performance: 10.23 TF (7.22 TF sustained)

– Top 500 list debut: #15 (June 2004)

• SGI Altix [cobalt]

– 1,024 Intel Itanium 2 processors

– Peak performance: 6.55 TF (6.1 TF sustained)

– Top 500 list debut: #48 (June 2005)

• IBM pSeries 690 [copper]

– 384 IBM POWER4 p690 processors, 7 with 64 GB/system, 4 with 256 GB/system

– Peak performance: 2 TF (708 GF sustained)

– Top 500 list debut: #99 (June 2003)

National Center for Supercomputing Applications
Source: http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/

HPC Challenges

• Computational complexity of scientific applications increases faster than the

hardware capabilities used to run the applications

– Science and engineering teams are requesting more cycles than HPC centers can provide

• The gap between the application performance and the peak system performance

increases

– Few applications can utilize high percentage of microprocessor peak performance, but even

fewer applications can utilize high percentage of the peak performance of a multiprocessor

system

• I/O bandwidth and clock wall put limits on computing speed

– Computational speed increasing faster than memory or network latency is decreasing

– Computational speed is increasing faster than memory bandwidth

– The processor speed is limited due to leakage current

– Storage capacities increasing faster than I/O bandwidths

• Building and using larger machines becomes more and more challenging

– Increased space, power, and cooling requirements
• ~$1M+ per year in cooling and power costs for moderate sized systems

– Application fault-tolerance becomes a major concern

National Center for Supercomputing Applications

Black Hole Collision Problem

National Center for Supercomputing Applications

1963

Hahn and Lindquist

IBM 7090

One Processor

Each 0.2 MF

3 Hours

1977

Eppley and Smarr

CDC 7600

One Processor

Each 35 MF

5 Hours

1999

Seidel and Suen, et al.

NCSA SGI Origin

256 Processors

Each 500 MF

40 Hours

300X 30,000X

1,800,000,000X

2001

Seidel et al

NCSA Pentium III

256 Processors

Each 1 GF

500,000 Hours total

plus 500,000 hours at NERSC

~200X

Processor speedup is only 5000x

(~50 KW)

Source: http://gladiator.ncsa.uiuc.edu/PDFs/iacat/Pennington_PetascaleSystems_Apr06.pdf

Digit{ized|al} Sky Surveys

From Data Drought to Data Flood

National Center for Supercomputing Applications

1977-1982

First CfA Redshift Survey

spectroscopic observations of

1,100 galaxies

1985-1995

Second CfA Redshift Survey

spectroscopic observations of

18,000 galaxies

Sources: http://www.cfa.harvard.edu/~huchra/zcat/

http://www.sdss.org/

2000-2005

Sloan Digital Sky Survey I

spectroscopic observations of

675,000 galaxies

New Ways of Computing

• General-purpose processors

– Multi-core

• Special-purpose processors

– Field-Programmable Gate Arrays

(FPGAs)

• Digital signal processing, embedded

– Graphics Processing Units (GPUs)

• Desktop graphics accelerators

– Sony/Toshiba/IBM Cell Broadband

Engine

• Game console and digital content delivery

systems

– …
National Center for Supercomputing Applications

High-Performance Reconfigurable

Computing (HPRC)

• Gerald Estrin's idea of “fixed plus

variable structure computer”

– reconfigurable hardware is tailored to

perform a specific task

• as quickly as a dedicated piece of

hardware

– once the task is done, the hardware is

adjusted to do other tasks

– the main processor controls the behavior

of the reconfigurable hardware

• Wikipedia‟s definition

– “Reconfigurable computing is computer

processing with highly flexible computing

fabrics. The principal difference when

compared to using ordinary

microprocessors is the ability to make

substantial changes to the data path itself

in addition to the control flow.”

• Field Programmable Gate Array

(FPGA) is the enabling technology

• IEEE Computer, March 2007

• High-Performance Reconfigurable Computers are

parallel computing systems that contain multiple

microprocessors and multiple FPGAs. In current

settings, the design uses FPGAs as coprocessors that

are deployed to execute the small portion of the

application that takes most of the time—under the 10-

90 rule, the 10 percent of code that takes

90 percent of the execution time.

National Center for Supercomputing Applications

Reconfigurable Computing (RC)

Promises

• Higher sustained performance

– exploring inherent parallelism in

algorithms

• spatial parallelism, instruction level

parallelism

– matching computation with data flow

• FPGAs are on a faster „growth‟

curve than CPUs

– Can keep up with the increasing

complexity of scientific applications

• Reduced power requirements as

compared to microprocessor-based

systems

– Larger systems can be built

• Faster execution, better resource

utilization, and lower power

consumption

and Pitfalls

• Current FPGA technology does not

address the needs of scientific

computing community

– Gate count on FPGAs only recently

became sufficient for practical use in

applications with DPFP

– No dedicated FP hardware support

• Software development for RC

systems by computational

scientists still remains not easy

– Software development methodology for

RC is different from software

development methodology for

microprocessor-based systems

National Center for Supercomputing Applications

Motivation

• Can Reconfigurable Computing be used to accelerate computationally

intensive scientific applications?

– Speedup of an order of magnitude or more

– Codes that rely on double-precision floating-point math

• Can computational scientists effectively use Reconfigurable Computing

without the need to re-write all their code from scratch?

– Reuse of legacy code is important

• Can computational scientists effectively use Reconfigurable Computing

without the need to become hardware experts?

– C/Fortran style of code development as opposite to hardware design tools and

hardware description languages

• Is this technology viable today and will it be viable in 5, 10 years from

now?

– Technology development roadmap

– FPGA performance trends vs. multi-core CPU performance trend

National Center for Supercomputing Applications

Presentation Outline

• Motivation

• Reconfigurable computing technology background

– FPGA, dataflow graph, FPGA “code” design cycle, HPRC

systems/design flow

• HPRC Application Design Issues

– SW/HW code partitioning, code transformations, performance

measurements, load-balancing

• HPC Application examples

– Molecular dynamics

– Cosmology

• Conclusions

National Center for Supercomputing Applications

National Center for Supercomputing Applications

Generic FPGA Structure

• FPGAs are

– small clusters of “low-level”

logic, e.g.,

• flip-flops

• lookup tables (LUTs)

– and connection grids

– that can be reconfigured to

implement “higher-level”

operations

• “Bitstream” is a

complete configuration

for the chip

switch blockfunction block

I/O block interconnect

National Center for Supercomputing Applications

Example: Xilinx Virtex 2 FPGAs

• Virtex-II XC2V6000

– 33,792 slices

• 67,584 4-input LUTs

• 67,584 flip flops

– 144 18x18 integer multipliers

– 144 Block RAMs (2,592 Kbits total)

– 1,104 User I/O

• Virtex 2 Pro 2VP100

– 44,096 slices

• 88,192 4-input LUTs

• 88,192 flip flops

– 444 18x18 integer multipliers

– 444 Block RAMs (7,992 Kbits total)

– 1,164 User I/O

– 20 RocketIO Transceivers

– 2 PPC405s

National Center for Supercomputing Applications

Configurable Logic Blocks (CLB) slice

• Main elements

are

– lookup tables &

– flip-flops

• Configurable

refers to the

ability to load

lookup tables

with user-

specified logic

National Center for Supercomputing Applications

Lookup tables (LUT)

• Lookup tables

are primary

elements for

logic

implementation

• Each LUT can

implement any

function of 4

inputs

National Center for Supercomputing Applications

Implementing Operations on FPGA

• Example: adder

– Described by a HDL (VHDL

or Verilog)

– “Synthesized” to the “low-

level” resources available on

the chip

+ clock

16b 16b

16b

National Center for Supercomputing Applications

Dataflow Concept

• Basic idea

– express computation with

interconnected function units

• Data flow graph (DFG)

• Can be implemented in

FPGA logic

• Each function unit has a

latency

– If we provide inputs to the

DFG, the results will be

output n clock cycles later

– Thus, new inputs can be

taken every n clock cycles

A=B+C*D-E

C DB

+

x

E

-

A

2c

1c

1c

4c

National Center for Supercomputing Applications

Pipelining Concept

• Basic idea
– Non-pipelined functional

unit can take new inputs
only after it is done
processing previous
inputs

– The fully pipelined
functional unit can take
a new input and
produce a new output
on every clock cycle

• DFG can be pipelined
by adding delays

A=B+C*D-E

C DB

+

x

E

-

A

2c

1c

1c

4c

2c

3c

National Center for Supercomputing Applications

Examples of Pipelined DFGs

for (i=0; i<n; i++)

a[i]=b[i]*c[i]

if (a>b) c = a+b;

else c = a*b;

&a &b &c

i

+++

load load

store

x

delay

delay

1c 1c 1c

3c 3c 3c

2c2c

3c

9c

a b

x+>

delay

selector

2c1c1c

1cdelay 1c

3c

1c

National Center for Supercomputing Applications

Traditional FPGA “Code” Design Cycle

Algorithm

HDL Model

netlist

bitstream

synthesis

implementation (map, place & route)

Functional simulation

Post-synthesis simulation

Timing simulation

downloading and testing

National Center for Supercomputing Applications

Mapping

LUT 1 LUT 2

LUT 3

LUT 4

netlist

National Center for Supercomputing Applications

FPGA

CLB slices

Placing

LUT 1 LUT 2

LUT 3
LUT 4

netlist

National Center for Supercomputing Applications

Routing

FPGA

CLB slices

LUT 1 LUT 2

LUT 3
LUT 4

netlist

National Center for Supercomputing Applications

P&R Report Example

• Device Utilization Summary

Number of BUFGMUXs 1 out of 16 6%

Number of External IOBs 815 out of 1104 73%

Number of LOCed IOBs 815 out of 815 100%

Number of MULT18X18s 10 out of 144 6%

Number of SLICEs 3286 out of 33792 9%

• Clock report

Constraint | Requested | Actual | Logic

| | | Levels

TS_CLOCK = PERIOD TIMEGRP "CLOCK" 10 ns H | 10.000ns | 9.786ns | 0

IGH 50% | | |

High-Level Language based FPGA Code Design

National Center for Supercomputing ApplicationsNational Center for Supercomputing Applications

Algorithm

HLL Model

HLL to HDL

compiler

Conventional software

execution and

debugging

Synthesis and

implementation

transparent to the

software developer b
it

st
re

am

downloading

and testing

National Center for Supercomputing Applications

HPRC System Concept Overview

• Microprocessor • Reconfigurable

processor

microprocessor FPGA

memorymemory

common

memory

communication channel (PCI, DIM, HyperTransport, etc.)

disk

SGI Altix 350 with RC100 Blade

dual-Itanium 2

motherboard

1.4 GHz, 4 GB memory

2 microprocessors

memory

NUMALink 4

3.2 GB/s

each direction

dual-blade chassis

RC100 blade 2RC100 blade 1

TIO ASIC

Loader

FPGA

PROM

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

TIO ASIC

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Q
D

R
 S

R
A

M

Algorithm FPGA 1

Virtex 4 LX200

Algorithm FPGA 2

Virtex 4 LX200

3.
2

G
B

/s

ea
ch

 d
ire

ct
io

n

3.
2

G
B

/s

ea
ch

 d
ire

ct
io

n

1.
6

G
B

/s

ea
ch

 d
ire

ct
io

n

SCR-6 Reconfigurable Computer

dual-Xeon motherboard
2.8 GHz, 1 GB memory

Memory

SRC Hi-Bar 4-port Switch
Sustained 1.4 GB/s per port with 180 ns latency per tier

SNAP™

2 microprocessors

PCI-X

4.8 GB/s

2400 MB/s eachGPIO

4.8 GB/s

OBM A
(4 MB)

OBM B
(4 MB)

OBM C
(4 MB)

OBM D
(4 MB)

OBM E
(4 MB)

OBM F
(4 MB)

Control FPGA

User FPGA 1
XC2VP100

User FPGA 0
XC2VP100

192

64 6464646464

192

108

64 6464646464

OBM G
(2 MB)

OBM H
(2 MB)

1.4 GB/s1.4 GB/s MAPE®

Reconfigurable
Processor

SRC-6 MAPstation

National Center for Supercomputing Applications

RC Software Development

HW/SW

partitioning

HW implementation,

test & verification

microprocessor code

SW implementation,

test & verification

FPGA design

algorithm

specifications

FPGA

platform

description

microprocessor

platform

description

Presentation Outline

• Motivation

• Reconfigurable computing technology background

– FPGA, dataflow graph, FPGA “code” design cycle, HPRC

systems/design flow

• HPRC Application Design Issues

– SW/HW code partitioning, code transformations, performance

measurements, load-balancing

• HPC Application examples

– Molecular dynamics

– Cosmology

• Conclusions

National Center for Supercomputing Applications

National Center for Supercomputing Applications

SW/HW Code Partitioning

• Code profiling is necessary to identify code

section(s) responsible for the majority of the

execution time

– 90% of time is spent while executing 10% of the code

• Other factors are important as well

– Process granularity

– Data conversion

– Number of calls to the FPGA-based code

V. Kindratenko, Code partitioning for reconfigurable high-performance computing: a case study,

in Proc. Engineering of Reconfigurable Systems and Algorithms - ERSA'06, 2006, pp. 143-149

National Center for Supercomputing Applications

Example: MATPHOT

• Image convolution using a separable

kernel

 






 














1

0

1

0

][][],[],[],[

k

i

col

l

j

row ihjhjnimalkhnma

1DCONVOLUTION(I, O, P, H, Q)
1 for p ← 0 to P-1
2 O[p] ← 0
3 for q ← 0 to Q-1
4 O[p] ← O[p] + I[p+q] · H[q]
5 end
6 return O

National Center for Supercomputing Applications

Image Convolution

• Per-row convolution

followed by per-

column convolution

• O(K+L) per-pixel

computational

complexity


 =

=

K

L

National Center for Supercomputing Applications

Image Convolution Implementation

• Wrapper

/* shift DELTAX pixels in the X direction */

for (iy = 0; iy < image_in->sn; ++iy)

{

for (ix = 0; ix < image_in->sm; ++ix)

iAx[ix] = image_in->img[iy*image_in->sm+ix];

sshift(iAx, image_in->sm, dx, zeroF, oAx, sinc_x);

for (ix = 0; ix < image_out->sm; ++ix)

image_out->img[iy*image_out->sm+ix] = oAx[ix];

}

/* shift DELTAY pixels in the Y direction */

for (ix = 0; ix < image_in->sm; ++ix)

{

for (iy = 0; iy < image_in->sn; ++iy)

iAy[iy] = image_out->img[iy*image_in->sm+ix];

sshift(iAy, image_in->sn, dy, zeroF, oAy, sinc_y);

for (iy = 0; iy < image_out->sn; ++iy)

image_out->img[iy*image_out->sm+ix] = oAy[iy];

}

• Image occupies a continuous memory segment

• Subroutine

void sshift(float *x, long n, float shift, float hole, float
*xp, float *sinc)

{

// split the desired shift into a fractional and integer part

int ishift = (int)shift;

float fshift = shift - ishift;

/* convolve the input data with the sinc array */

for (int point = 0; point < n; point++)

{

xp[point] = 0.0f;

for (int lobe = 0; lobe < 21; lobe++)

{

int npix = point - (lobe - 10);

if ((npix >= 0) && (npix < n)) {

xp[point] += sinc[lobe] * x[npix];

}

else {

xp[point] += sinc[lobe] * hole;

}

}

}

}

National Center for Supercomputing Applications

• sshift executed on

the MAP

Code Partitioning Approach #1

/* shift DELTAX pixels in the X direction */

for (iy = 0; iy < image_in->sn; ++iy)

{

for (ix = 0; ix < image_in->sm; ++ix)

iAx[ix] = image_in->img[iy*image_in->sm+ix];

sshift(iAx, image_in->sm, dx, zeroF, oAx, sinc_x);

for (ix = 0; ix < image_out->sm; ++ix)

image_out->img[iy*image_out->sm+ix] = oAx[ix];

}

/* shift DELTAY pixels in the Y direction */

for (ix = 0; ix < image_in->sm; ++ix)

{

for (iy = 0; iy < image_in->sn; ++iy)

iAy[iy] = image_out->img[iy*image_in->sm+ix];

sshift(iAy, image_in->sn, dy, zeroF, oAy, sinc_y);

for (iy = 0; iy < image_out->sn; ++iy)

image_out->img[iy*image_out->sm+ix] = oAy[iy];

}

0.0

0.5

1.0

1.5

2.0

2.5

3.0

128 256 512 1024 2048

image size (pixels)

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

MAP code execution

MAP function call overhead

memory copy

Overall slowdown is ~2x

National Center for Supercomputing Applications

• intp_filter1D

executed on the MAP

Code Partitioning Approach #2

/* shift DELTAX pixels in the X direction */

intp_filter1D((int64_t *)sinc_x, (int64_t *)image_in-
>img, (int64_t *)tmp1->img, image_in->sm,
image_in->sn, hole, &tm1, mapnum);

// rotate image

pgm_turn(tmp1, image_out, LEFT);

/* shift DELTAY pixels in the Y direction */

intp_filter1D((int64_t *)sinc_y, (int64_t *)image_out-
>img, (int64_t *)tmp1->img, image_out->sm,
image_out->sn, hole, &tm1, mapnum);

// rotate image

pgm_turn(tmp1, image_out, RIGHT);

0.0

0.5

1.0

1.5

2.0

2.5

3.0

128 256 512 1024 2048

image size (pixels)

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

MAP code execution

MAP function call overhead

memory copy

Overall slowdown is ~1.5x

National Center for Supercomputing Applications

• intp_filter2D

executed on the MAP

Code Partitioning Approach #3

/* 2D interpolation */

intp_filter2D((int64_t *)image_in->img,

(int64_t *) image_out->img,

(int)image_in->sm, (int)image_in->sn,

(int64_t *)sinc_x, (int64_t *)sinc_y, zeroF,

image_in->sm*image_in->sn*sizeof(float),

&tm, mapnum);

0.00

0.05

0.10

0.15

0.20

0.25

0.30

128 256 512 1024 1772

image size (pixels)

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
) MAP code execution

MAP function call overhead

Overall speedup is 3x

National Center for Supercomputing Applications

Comparison for a 1024x1024 Image

0

0.2

0.4

0.6

0.8

1

CPU only scheme #1 scheme #2 scheme #3

Implementation type

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

MAP 'compute' time
MAP function call overhead
CPU 'compute' time
CPU data manipulation time

Code Transformations

• Why

– Separate address space

– Different memory architecture with explicit memory control

– SW/HW HL Language differences

• How

– Transform data to fit into the FPGA-accessible memory architecture

– Add data transfer calls to the subroutine to be ported to FPGA

– Modify the ported subroutine for explicit use of on-board or on-chip memory

banks

– For optimal performance, modify the ported subroutine to avoid memory

bank conflicts, scalar and memory dependencies

– For optimal performance, overlap data transfer with calculations

– If space permits, instantiate multiple execution pipelines …

National Center for Supercomputing Applications

V. Kindratenko, C. Steffen, R. Brunner, Accelerating scientific applications with reconfigurable computing

getting started (with SRC-6), to appear in Computing in Science and Engineering, 2007.

V. Kindratenko, D. Pointer, D. Caliga, High-Performance Reconfigurable Computing

Application Programming in C, White Paper, January 2006

Example: Rational Function Evaluation

• Evaluate the following function for a

million values of x:

• C implementation is straightforward:

for (i = 0; i < sz; i++) {

const double x = X[i];

double P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));

double Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));

R[i] = P / Q;

}

National Center for Supercomputing Applications

5432

0

5432

0

xq+xq+xq+xq+xq+q

xp+xp+xp+xp+xp+p
=

Q(x)

P(x)
=R(x)

54321

54321

main.c

Original
#include <stdlib.h>

#define SZ 1048576

void ratval5(double *X, double *R, int sz);

int main (int argc, char *argv[])

{

double *X = (double *)malloc(SZ * sizeof(double));

double *R = (double *)malloc(SZ * sizeof(double));

for (int i = 0; i < SZ; i++) X[i] = rand();

ratval5(X, R, SZ);

free(X);

free(R);

}

Modified for SRC-6
#include <stdlib.h>

#include <libmap.h>

#define SZ 1048576

void ratval5(double X[], double R[], int sz, int mapnum);

int main (int argc, char *argv[])

{

int nummap=0;

double *X = (double *)Cache_Aligned_Allocate(SZ * sizeof(double));

double *R = (double *)Cache_Aligned_Allocate(SZ * sizeof(double));

for (int i = 0; i < SZ; i++) X[i] = rand();

map_allocate(1);

ratval5(X, R, SZ, nummap);

map_free(1);

Cache_Aligned_Free((char*)X);

Cache_Aligned_Free((char*)R);

}

National Center for Supercomputing Applications

ratval5

ratval5.c (target: CPU)

void ratval5(double *X, double *R, int sz)

{

const float p0=0.434f;

const float p1=-0.3434f;

const float p2=3.4545f;

const float p3=-0.0045f;

const float p4=-22.344f;

const float p5=-0.4542f;

const float q0=0.595f;

const float q1=0.34152f;

const float q2=-1.4653f;

const float q3=3.2323f;

const float q4=0.67578f;

const float q5=0.112f;

int i;

ratval5.mc (target: FPGA)
#include <libmap.h>

void ratval5(double X[], double R[], int sz, int mapnum)

{

OBM_BANK_A (AL, double, MAX_OBM_SIZE)

OBM_BANK_B (BL, double, MAX_OBM_SIZE)

OBM_BANK_C (CL, double, MAX_OBM_SIZE)

OBM_BANK_D (DL, double, MAX_OBM_SIZE)

const float p0=0.434f;

const float p1=-0.3434f;

const float p2=3.4545f;

const float p3=-0.0045f;

const float p4=-22.344f;

const float p5=-0.4542f;

const float q0=0.595f;

const float q1=0.34152f;

const float q2=-1.4653f;

const float q3=3.2323f;

const float q4=0.67578f;

const float q5=0.112f;

int i;

National Center for Supercomputing Applications

ratval5 (continued)

ratval5.c (target: CPU)

for (i = 0; i < sz; i++)

{

const double x = X[i];

double P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));

double Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));

R[i] = P / Q;

}

}

ratval5.mc (target: FPGA)
if (!sz) return;

DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,"A,B"), X, 1, sz*8, 0);

wait_DMA (0);

for (i = 0; i < sz; i++)

{

const double x = (i % 2 == 0) ? AL[i/2] : BL[i/2];

double P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));

double Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));

double val = P / Q;

if (i % 2 == 0) CL[i/2] = val;

else DL[i/2] = val;

}

DMA_CPU (OBM2CM, CL, MAP_OBM_stripe(1,"C,D"), R, 1, sz*8, 0);

wait_DMA (0);

}

National Center for Supercomputing Applications

2
.1

 G
F

L
O

P
s

1
.0

5
 G

F
L

O
P

s

Loop summary:

clocks per iteration: 1

pipeline depth: 170

ratval5 revised

DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,"A,B"), X, 1, sz*sizeof(double), 0);

wait_DMA (0);

#pragma src parallel sections

{

#pragma src section

{

int i;

for (i = 0; i < sz/2; i++)

{

const double x = AL[i];

double P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));

double Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));

put_stream_dbl(&S0, P / Q, 1);

}

}

#pragma src section

{

int i;

for (i = 0; i < sz/2; i++)

{

const double x = BL[i];

double P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));

double Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));

put_stream_dbl(&S1, P / Q, 1);

}

}

#pragma src section

{

stream_dma_cpu_dual(&S0, &S1, STREAM_TO_PORT, CL, DMA_C_D, R, 1,

sz*sizeof(double));

}

}

• Main memory to OBM DMA

data transfer

• First compute engine

– Input: OBM A

– Output: stream

• Second compute engine

– Input: OBM B

– Output: stream

• FPGA to main memory DMA

data transfer

– Input: 2 internal streams

– Output: main system memory

National Center for Supercomputing Applications

4
.2

 G
F

L
O

P
s

2
.1

 G
F

L
O

P
s

National Center for Supercomputing Applications

• Microprocessor

• FPGA

Performance Measurements

pre-

processing

post-

processing
microprocessor compute engine

pre-

processing

post-

processing

DMA

data in

DMA

data out

FPGA

compute engine

Load

FPGA

overall compute time

kernel compute time

kernel compute time

kernel compute and FPGA overhead time

overall compute time

V. Kindratenko, D. Pointer, D. Caliga, High-Performance Reconfigurable Computing

Application Programming in C, White Paper, January 2006.

National Center for Supercomputing Applications

Example: Image Distance Transform

• For all background pixels, calculate the

distance to the nearest object

distance transform

b
f

National Center for Supercomputing Applications

Brute Force Implementation

• Algorithm
– Image pixels are divided into

foreground and background
pixels

– Coordinate lists are built for
each group of pixels

– For each pixel from the
background list, calculate
distance to each pixel from the
foreground list and pick the
shortest one

• Computational complexity is
N*M where
– N is number of the foreground

pixels

– M is number of the background
pixels

// computational kernel

void dtransform_sw(short *fg_pixel, short *bg_pixel,
float *bg_distance, long fg_count, long bg_count)

{

long i, j, d, d_min;

int x, y, dx, dy;

for (i = 0; i < 2*bg_count; i += 2)

{

x = bg_pixel[i];

y = bg_pixel[i+1];

d_min = MAX_INT;

for (j = 0; j < 2*fg_count; j += 2)

{

dx = x - fg_pixel[j];

dy = y - fg_pixel[j+1];

d = dx * dx + dy * dy;

if (d < d_min) d_min = d;

}

bg_distance[i/2] = sqrt(d_min);

}

}

National Center for Supercomputing Applications

SRC-6 Algorithm Implementation
start

DMA foreground pixels to OBM

DMA background pixels to OBM

stop

copy foreground pixels to BRAM

compute loop

20 distances at once

DMA results out

send to bridge initial parameters

fix for memory boundary alignment copy foreground pixels to BRAM

start

stop

get initial parameters from bridge

compute loop

20 distances at once

fix for memory boundary alignment

A B C D

A B

C D

bridge

DMA

DMA

DMA

E F

E F

National Center for Supercomputing Applications

Distance Compute Time Only
MAP vs CPU performance (512x512 image)

18.1
18.919.519.9

17.8
18.4

0

10

20

30

40

50

60

70

1.0E+07 2.0E+09 4.0E+09 6.0E+09 8.0E+09 1.0E+10 1.2E+10 1.4E+10 1.6E+10

number of distance calculations

ti
m

e
 (

s
)

0.0

5.0

10.0

15.0

20.0

s
p

e
e

d
-u

p
 (

x
)

CPU

MAP

speed-up

National Center for Supercomputing Applications

Overall Function Call Time
MAP vs CPU performance (512x512 image)

3.0

5.0

8.6

0.9

1.5

17.1
13.7

15.7

16.8 17.0

0

10

20

30

40

50

60

70

1.0E+07 2.0E+09 4.0E+09 6.0E+09 8.0E+09 1.0E+10 1.2E+10 1.4E+10 1.6E+10

number of distance calculations

ti
m

e
 (

s
)

0.0

5.0

10.0

15.0

20.0

s
p

e
e

d
-u

p
 (

x
)

CPU

MAP

speed-up

National Center for Supercomputing Applications

Performance Analysis

• 200 foreground pixels

– ~55M distance calculations

– 1.5x speedup

– 0.15 sec FPGA function call

• 20,000 foreground pixels

– ~5B distance calculations

– 16.8x speedup

– 1.35 sec FPGA function call

data transfer,

0.0015, 0%

overhead,

0.1373, 10%

compute,

1.2107, 90%

compute,

0.0131, 9%

overhead,

0.1375, 90%

data transfer,

0.0016, 1%

Presentation Outline

• Motivation

• Reconfigurable computing technology background

– FPGA, dataflow graph, FPGA “code” design cycle, HPRC

systems/design flow

• HPRC Application Design Issues

– SW/HW code partitioning, code transformations, performance

measurements, load-balancing

• HPC Application examples

– Molecular dynamics

– Cosmology

• Conclusions

National Center for Supercomputing Applications

HPC Application Example 1: NAMD

• A parallel molecular dynamics
code designed for high-
performance simulation of
large biomolecular systems

– 100K atoms on

– 100s of CPUs

• Developed by the Theoretical
and Computational
Biophysics Group at Beckman
Institute, UIUC

• Currently is the largest
compute cycle user on
NCSA‟s production systems

National Center for Supercomputing Applications

First-Ever Simulation of Functioning Organism Spawned by

Ingenuity of Illinois Researchers and Power of SGI Altix,

SGI Press Release, May 2006.

Image is courtesy of Anton Arkhipov, UIUC Theoretical and

Computational Biophysics Group

National Center for Supercomputing Applications

Molecular Dynamics Simulation

• Basic principles

– each atom is treated as

a point mass

– simple force rules

describe the

interactions between

atoms

– Newton's equations are

integrated to move the

atoms

xi

xj

2

2

1

x
)x(F

)x,x(f:)x(F

dt

d
m i

ii

N

ji

jii



 


National Center for Supercomputing Applications

Molecular Dynamics Simulation

initialize

calculate forces

update positions

• Basic algorithm

))x(F(xx

)x,x(f:)x(F

x

1

1

k
i

k
i

k
i

N

ji

k
j

k
i

k
i

k
i

f









time step

atom index

National Center for Supercomputing Applications

NAMD Benchmark Dataset

• 92224 atoms

• 144 patches

– between 500 and 700 atoms per patch

• numSelfComputes = 144

• numPairComputes = 144*13=1872

• calc_both() is called 144+1872=2016 times

• accumulated compute time is ~9.28 seconds

– SRC host workstation

• Dual Xeon 2.8 GHz, 1 GB mem

National Center for Supercomputing Applications

NAND on SRC MAP

• Steps necessary to port NAMD to SRC-6

– All data structures need to be converted to 1D

arrays

• lookup tables

• input data (atom position, etc.)

• output data (forces)

– The code to be ported to FPGA should be

outsourced to a separate function

• and modified to work with the 1D arrays

National Center for Supercomputing Applications

NAMD SRC-6 implementation

first time

start

DMA lookup tables to OBM

stream input data and copy to

OBM, BRAM, and stream to bridge

stop

yes no

copy lookup tables to BRAM

compute

for i=0,4,8,…

merge results and stream them out

send to bridge initial parameters

compute

for i=1,5,9,…

copy lookup tables to BRAM

copy from bridge to BRAM

first time

start

yes no

stop

get initial parameters from bridge

compute

for i=2,6,10,…

compute

for i=3,7,11,…

A B C D E F

A B

C D E F

bridge

bridge

A B

DMA

DMA

DMA

National Center for Supercomputing Applications

NAMD results

• Primary chip

Device Utilization Summary:

Number of BUFGMUXs 1 out of 16 6%

Number of External IOBs 832 out of 1164 71%

Number of LOCed IOBs 832 out of 832 100%

Number of MULT18X18s 131 out of 444 29%

Number of RAMB16s 258 out of 444 58%

Number of SLICEs 44094 out of 44096 99%

Timing analysis: Actual: 9.964ns

• Secondary chip

Device Utilization Summary:

Number of BUFGMUXs 1 out of 16 6%

Number of External IOBs 745 out of 1164 64%

Number of LOCed IOBs 745 out of 745 100%

Number of MULT18X18s 134 out of 444 30%

Number of RAMB16s 258 out of 444 58%

Number of SLICEs 40427 out of 44096 91%

Timing analysis: Actual: 9.971ns

Execution time ~3.07 seconds (measured on CPU)

~0.15 seconds due to data DMA in/out and (measured on MAP)

~0.84 seconds due to MAP function call overhead

~2.08 seconds due to actual calculations (measured on MAP)

which is 3x speedup

V. Kindratenko, D. Pointer, A case study in porting a production scientific supercomputing application to

a reconfigurable computer, in Proc. IEEE Symposium on Field-Programmable Custom Computing

Machines - FCCM'06, 2006. pp. 13-22.

HPC Application Example 2: Two-point

Angular Correlation

• TPACF, denoted as (), is the

frequency distribution of angular

separations  between celestial

objects in the interval (,  + )

–  is the angular distance between

two points

• Red Points are, on average,

randomly distributed, black

points are clustered

– Red points: ()=0

– Black points: ()>0

• Can vary as a function of angular

distance,  (blue circles)

– Red: ()=0 on all scales

– Black: () is larger on smaller

scales

National Center for Supercomputing Applications

National Center for Supercomputing Applications

The Method

• The angular correlation function is calculated

using the estimator derived by Landy & Szalay

(1993):

• where DD() and RR() are the autocorrelation

function of the data and random points,

respectively, and DR() is the cross-correlation

between the data and random points.

 
   

 
1

1

21

2

2

















i

R

i

RDD

RR
n

DR
nn

DD
n

National Center for Supercomputing Applications

DD & RR Algorithm: Autocorrelation

distance
bin map

f()

bin

update

i: 0 to N-2 j: i+1 to N-1

N points

D
D

(
),

 R
R

(
)

National Center for Supercomputing Applications

DR Algorithm: Cross-correlation

distance
bin map

f()

bin

update

i: 0 to N-1

j: 0 to N-1

N points

D
R

(
)

National Center for Supercomputing Applications

Microprocessor Code Organization

// compute DD

doCompute{CPU|FPGA}(data, npd, data, npd, 1, DD, binb, nbins);

// loop through random data files

for (i = 0; i < random_count; i++)

{

// compute RR

doCompute{CPU|FPGA}(random[i], npr[i], random[i], npr[i], 1, RRS, binb, nbins);

// compute DR

doCompute{CPU|FPGA}(data, npd, random[i], npr[i], 0, DRS, binb, nbins);

}

// compute w

for (k = 0; k < nbins; k++)

{

w[k] = (random_count * 2*DD[k] - DRS[k]) / RRS[k] + 1.0;

}

Reference C Kernel Implementation

for (i = 0; i < ((autoCorrelation) ? n1-1 : n1); i++)

{

double xi = data1[i].x;

double yi = data1[i].y;

double zi = data1[i].z;

for (j = ((autoCorrelation) ? i+1 : 0); j < n2; j++)

{

double dot = xi * data2[j].x + yi * data2[j].y + * data2[j].z;

// binary search

min = 0; max = nbins;

while (max > min+1)

{

k = (min + max) / 2;

if (dot >= binb[k]) max = k;

else min = k;

};

if (dot >= binb[min]) data_bins[min] += 1;

else if (dot < binb[max]) data_bins[max+1] += 1;

else data_bins[max] += 1;

}

}
National Center for Supercomputing Applications

pi

pj


q0 q1 q2 q3 q4 q5

Kernel Written in MAP C (SRC-6)

// main compute loop

for (i = 0; i < n1; i++) {

pi_x = AL[i]; pi_y = BL[i]; pi_z = CL[i]; // point i

#pragma loop noloop_dep

for (j = 0; j < n2; j++) {

// what bin memory bank to use in this loop iteration

cg_count_ceil_32 (1, 0, j == 0, 3, &bank);

pj_x = DL[j]; pj_y = EL[j]; pj_z = FL[j]; // point j

dot = pi_x * pj_x + pi_y * pj_y + pi_z * pj_z; // dot product

// find what bin it belongs to

select_pri_64bit_32val((dot < bv31), 31, (dot < bv30), 30,

…

(dot < bv02), 2, (dot < bv01), 1, 0, &indx);

// update the corresponding bin count

if (bank == 0) bin1a[indx] += 1;

else if (bank == 1) bin2a[indx] += 1;

else if (bank == 2) bin3a[indx] += 1;

else bin4a[indx] += 1;

}

}
National Center for Supercomputing Applications

Algorithm FPGA 2

OBM D

LS

OBM E OBM F

OBM B OBM COBM A

Algorithm FPGA 1

LS

Kernel Written in Mitrion-C (RC100)

// loop in one data set

(bins, afinal, bfinal) = for (i in <0 .. NPOINTS_1>)

{

(xi, yi, zi, a1, b1) = readpoint(a0, b0, i); // read next point

uint:64[NBINS] binsB = binsA;

ExtRAM a2 = a0;

ExtRAM b2 = b0;

(binsA, a3, b3) = for(j in <0 .. NPOINTS_1>)

{

(xj, yj, zj, a2, b2) = readpoint(a1, b1, j+NPOINTS); // read next point

float:53.11 dot = xi * xj + yi * yj + zi * zj; // compute dot product

int:8 indx = findbin(dot, binb); // find what bin it belongs to

// update bin

binsB = foreach (bin in binsB by ind) if (ind == indx) bin + 1 else bin;

} (binsB, a2, b2);

} (binsA, a3, b3);

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS

Performance on Different Platforms

• ~100,000 data points, 100 random files

National Center for Supercomputing Applications

Measured features/

parameters

SRC-6 host
2.8 GHz Xeon

SRC-6 dual-

MAP

SGI Altix host
1.4 GHz Itanium 2

RC100 blade

CPUs 2 2

FPGAs 4 2

of compute

engines

1 17 2 4

DD time (s) 219.5 3 226.6 49.7

DR+RR time (s) 84,354.3 880.3 47,598.6 4,975.3

Load/convert (s) 20.3 20.7 28.4 27.5

Total (s) 84,594.1 904 47,853.6 5,052.5

Overall

Speedup
1.0

93.5x(1)

52.9x
1.0

9.5x(2)

(1) V. Kindratenko, R. Brunner, A. Myers, Dynamic load-balancing on multi-FPGA systems: a case study,

In Proc. 3rd Annual Reconfigurable Systems Summer Institute - RSSI'07, 2007.

(2) V. Kindratenko, R. Brunner, A. Myers, Mitrion-C Application Development on SGI Altix 350/RC100,

In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines - FCCM'07, 2007.

Scalability Study

• Actual (dual-MAP) • Projected (quad-MAP)

National Center for Supercomputing Applications

µP

Hi-Bar Switch

MAP

C

MAP

E

µP

Hi-Bar Switch

MAP

C

MAP

E

MAP

C

MAP

E

46.5x

79.5x
84.8x 88.9x 92.8x 94.7x 95.8x 96.4x 96.2x

0x

20x

40x

60x

80x

100x

120x

140x

1

10

100

1000

10000

100000

5000 25000 45000 65000 85000

s
p

e
e
d

u
p

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

dataset size

speedup CPU MAP

93.1x

159.1x
169.5x177.9x185.6x189.4x191.6x192.7x192.4x

0x

50x

100x

150x

200x

250x

300x

1

10

100

1000

10000

100000

5000 25000 45000 65000 85000

s
p

e
e
d

u
p

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

dataset size

speedup CPU MAP

First Results Obtained on SRC-6

• SDSS DR5 photometric-

selected Luminous Red

Galaxy sample

– Observed dataset consisting of

1,641,323 points

– 100 random datasets,

1,000,000 points each

• Model

– Error estimation using 10

subsets

• Compute time

– 10.2 days (vs. 980 days on a

single 2.8 GHz Intel Xeon chip)

National Center for Supercomputing Applications

0.001

0.01

0.1

1

0.01 0.1 1 10

ω
(t

h
e

ta
)

theta (degrees)

Presentation Outline

• Motivation

• Reconfigurable computing technology background

– FPGA, dataflow graph, FPGA “code” design cycle, HPRC

systems/design flow

• HPRC Application Design Issues

– SW/HW code partitioning, code transformations, performance

measurements, load-balancing

• HPC Application examples

– Molecular dynamics

– Cosmology

• Conclusions

National Center for Supercomputing Applications

Lessons Learned

• Porting an existing code to an RC platform is considerably more difficult

than developing a new code

– Requires an in-depth understanding of the code structure and data flow

– Code optimization techniques used in the microprocessor-based implementation are

not applicable for RC implementation

– Data flow schemes used in the microprocessor-based implementation in most cases

are not suitable for RC implementation

• Only few scientific codes can be ported to an RC platform with relatively

minor modifications

– 90% of time is spent while executing 10% of the code

• Vast majority of the codes require significant restructuring in order to be

„portable‟

– No well-defined compute kernel

– Compute kernel is too large to fit on an FPGA

– Compute kernel operates on a small dataset or is called too many times

• function call overhead becomes an issue

National Center for Supercomputing Applications

Lessons Learned

• Effective use of high-level programming languages/tools, such as MAP

C/Carte (SRC-6) and Mitrion-SDK/Mitrion-C (RC100), to develop code for

RC platform requires some limited hardware knowledge

– Memory organization and limitations

• Explicit data transfer and efficient data access

– On-chip resources and limitations

– RC architecture-specific programming techniques

• Pipelining, streams, …

• Most significant code acceleration can be achieved when developing the

code from scratch; code developer then has the freedom to

– structure the algorithm to take advantage of the RC platform organization and

resources,

– select most effective SW/HW code partitioning scheme, and

– setup data formats and data flow graph that maps well into RC platform resources

National Center for Supercomputing Applications

Conclusions

• Reconfigurable Computing holds some great potential

for accelerating compute-intencive applications

– Dual-MAP implementation of the two-point angular correlation

algorithm outperforms a 2.8 GHz CPU by a factor of over 90

• Reuse of legacy code is not easy and is not always

possible

– Experience with porting existing codes to SRC-6 shows that the

code has to be significantly restructured/simplified before it

becomes feasible to port it to SRC-6

• C/Fortran style of code development is possible and is

quite effective with tools such as Carte and Mitrion-C

– Even though it still requires some hardware knowledge of the RC

platform

National Center for Supercomputing Applications

Acknowledgements

• Work funded by NASA grant NNG06GH15G and by NSF

award SCI 05-25308

• SRC Computers, Inc. collaborators

– David Caliga, Dan Poznanovic, Dr. Jeff Hammes, Jon Huppenthal

• An SGI Altix 350 system with an RC100 blade was

kindly made available by SGI

– Matthias Fouquet-Lapar, Tony Galieti, and Dick Riegner

• Mitrion SDK for RC100 RASC system was kindly

provided by Mitrionics AB

– Stefan Möhl and Jace Mogill

• UIUC/NCSA collaborators

– Dr. Robert Brunner, Dr. Adam Myers, Dr. Jim Phillips, Dr. Craig

Steffen

National Center for Supercomputing Applications

• When: July 17-20, 2007

• Where: NCSA, Urbana, IL

• What:

– July 17

• Nallatech Training and Users Group

Workshop

• SGI/Mitrionics workshop

• SRC Users Meeting

– July 18

• A keynote by Alan D. George, director of

the National Science Foundation Center

for High-Performance Reconfigurable

Computing (CHREC)

• Poster session

– July 19

• OpenFPGA meeting

– July 18-20

• 22 vendor and academic presentations

• 15 exhibitors

• http://rssi.ncsa.uiuc.edu

National Center for Supercomputing Applications

