
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

GPU Clusters for HPC

Volodymyr Kindratenko

Innovative Systems Laboratory

Acknowledgements

• ISL research staff

• Jeremy Enos

• Guochun Shi

• Michael Showerman

• Craig Steffen

• Alexey Titov

• UIUC collaborators

• Wen-Mei Hwu (ECE)

• Funding sources

• NSF grants 0810563 and 0626354

• NASA grant NNG06GH15G

• NARA/NSF grant

• IACAT's Center for Extreme-scale Computing

ISL Research

• Evaluation of emerging computing architectures

• Reconfigurable computing

• Many-core (GPU) architecture

• Heterogeneous clusters

• Systems software research and development

• Run-time systems

• GPU accelerator cluster management

• Tools and utilities: GPU memory test, power profiling, etc.

• Application development for emerging computing architectures

• Computational chemistry (electronic structure, MD)

• Computational physics (QCD)

• Cosmology

• Data mining

Top 10 from

TOP-500 Green500
Rank Site Computer

1

National

Supercomputing Center

in Tianjin

Tianhe-1A - NUDT TH MPP,

X5670 2.93Ghz 6C, NVIDIA

GPU, FT-1000 8C

2
DOE/SC/Oak Ridge

National Laboratory

Jaguar - Cray XT5-HE Opteron

6-core 2.6 GHz

3

National

Supercomputing Centre

in Shenzhen (NSCS)

Nebulae - Dawning TC3600

Blade, Intel X5650, NVIDIA Tesla

C2050 GPU

4
GSIC Center, Tokyo

Institute of Technology

TSUBAME 2.0 - HP ProLiant

SL390s G7 Xeon 6C X5670,

NVIDIA GPU, Linux/Windows

5 DOE/SC/LBNL/NERSC
Hopper - Cray XE6 12-core 2.1

GHz

6

Commissariat a

l'Energie Atomique

(CEA)

Tera-100 - Bull bullx super-node

S6010/S6030

7 DOE/NNSA/LANL

Roadrunner - BladeCenter

QS22/LS21 Cluster, PowerXCell

8i 3.2 Ghz / Opteron DC 1.8

GHz, Voltaire Infiniband

8

National Institute for

Computational

Sciences/University of

Tennessee

Kraken XT5 - Cray XT5-HE

Opteron 6-core 2.6 GHz

9
Forschungszentrum

Juelich (FZJ)
JUGENE - Blue Gene/P Solution

10 DOE/NNSA/LANL/SNL Cielo - Cray XE6 8-core 2.4 GHz

Rank Site Computer

1
IBM Thomas J. Watson

Research Center

NNSA/SC Blue Gene/Q

Prototype

2
GSIC Center, Tokyo

Institute of Technology

HP ProLiant SL390s G7 Xeon

6C X5670, NVIDIA GPU,

Linux/Windows

3 NCSA

Hybrid Cluster Core i3 2.93Ghz

Dual Core, NVIDIA C2050,

Infiniband

4

RIKEN Advanced

Institute for

Computational Science

K computer, SPARC64 VIIIfx

2.0GHz, Tofu interconnect

5
Forschungszentrum

Juelich (FZJ)

QPACE SFB TR Cluster,

PowerXCell 8i, 3.2 GHz, 3D-

Torus

5 Universitaet Regensburg

QPACE SFB TR Cluster,

PowerXCell 8i, 3.2 GHz, 3D-

Torus

5 Universitaet Wuppertal

QPACE SFB TR Cluster,

PowerXCell 8i, 3.2 GHz, 3D-

Torus

8 Universitaet Frankfurt

Supermicro Cluster, QC

Opteron 2.1 GHz, ATI Radeon

GPU, Infiniband

9
Georgia Institute of

Technology

HP ProLiant SL390s G7 Xeon

6C X5660 2.8Ghz, NVIDIA

Fermi, Infiniband QDR

10
National Institute for

Environmental Studies

GOSAT Research Computation

Facility, NVIDIA

QP: first GPU cluster

at NCSA

• 16 HP xw9400

workstations

• 2216 AMD Opteron 2.4

GHz dual socket dual core

• 8 GB DDR2

• PCI-E 1.0

• Infiniband QDR

• 32 Quadro Plex

Computing Servers

• 2 Quadro FX 5600 GPUs

• 2x1.5 GB GDDR3

• 2 per host

Lincoln: First GPU-based TeraGrid

production system

• Dell PowerEdge 1955 server

• Intel 64 (Harpertown) 2.33

GHz dual socket quad-core

• 16 GB DDR2

• Infiniband SDR

• Tesla S1070 1U GPU

Computing Server

• 1.3 GHz Tesla T10 processors

• 4x4 GB GDDR3 SDRAM

• Cluster

• Servers: 192

• Accelerator Units: 96

Dell PowerEdge

1955 server

IB

Tesla S1070

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

Dell PowerEdge

1955 server

PCIe x8 PCIe x8

SDR IB SDR IB

QP follow-up: AC

AC01-32 nodes

• HP xw9400 workstation

• 2216 AMD Opteron 2.4 GHz

dual socket dual core

• 8GB DDR2 in ac04-ac32

• 16GB DDR2 in ac01-03,

“bigmem” on qsub line

• PCI-E 1.0

• Infiniband QDR

• Tesla S1070 1U GPU

Computing Server

• 1.3 GHz Tesla T10

processors

• 4x4 GB GDDR3

• 1 per host

IB

Tesla S1070

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

HP xw9400 workstation

PCIe x16 PCIe x16

QDR IB

Nallatech

H101

FPGA

card

PCI-X

Lincoln vs. AC: HPL Benchmark

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0

500

1000

1500

2000

2500

1 node 2 nodes 4 nodes 8 nodes 16
nodes

32
nodes

%
 o

f
p

e
a
k

a
c
h

ie
v
e

d
 G

F
L

O
P

S

system size

AC (GFLOPS)

Lincoln (GFLOPS)

AC (% of peak)

Lincoln (% of peak)

AC34-AC41 nodes

• Supermicro A+ Server

• Dual AMD 6 core Istanbul

• 32 GB DDR2

• PCI-E 2.0

• QDR IB (32 Gbit/sec)

• 3 Internal ATI Radeon 5870

GPUs

AC33 node

Tesla S1070

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

Core i7 host

PCIe x16 PCIe x16

Tesla S1070

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

PCIe x16 PCIe x16

• CPU cores (Intel core i7): 8

• Accelerator Units (S1070): 2

• Total GPUs: 8

• Host Memory: 24-32 GB DDR3

• GPU Memory: 32 GB

• CPU cores/GPU ratio: 1:2

• PCI-E 2.0

• Dual IOH (72 lanes PCI-E)

AC42

• TYAN FT72-B7015

• X5680 Intel Xeon 3.33

GHz (Westmere-EP)

dual-sosket hexa-core

• Tylersburg-36D IOH

• 24 GB DDR3

• 8 PCI-E 2.0 ports

• switched

• NVIDIA GTX 480

• 480 cores

• 1.5 GB GDDR5

IOH IOH

PCIe

switch

PCIe

switch

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

G
T

X

4
8

0

D
R

A
M

EcoG: #3 on Green500 list

EcoG nodes designed

for low power

• EVGA P55V 120-LF-

E651-TR Micro ATX Intel

Motherboard

• Core i3 530 2.93 GHz

single-socket dual-core

• 4 GB DDR3

• PCIe x16 Gen2

• QDR Infiniband

• Tesla C2050

• 448 cores

• 3 GB GDDR5

• Cluster

• 128 nodes

PCIe

interface
C2050 DRAM

cpu

0

cpu

1

IB

QDR IB

GPU Cluster Software

• Shared system software

• Torque / Moab

• ssh

• Programming tools

• CUDA C SDK

• OpenCL SDK

• PGI+GPU compiler

• Matlab

• Intel compiler

• Other tools

• mvapich2 mpi (IB)

• Unique to AC

• CUDA wrapper

• memtest

• Power profiling

Need for GPU-aware cluster software stack

• Issues unique to compute nodes with GPUs

• Thread affinity mapping to maximize host-GPU bandwidth

• CUDA API/driver software bugs (mainly in initial product

releases)

• ...

• Issues unique to the GPU cluster

• Efficient GPUs sharing in a multi-user environment

• GPU memory cleanup between different users

• …

• Other issues of interest

• Are GPUs reliable? (Non-ECC memory in initial products)

• Are they power-efficient?

• …

Effects of NUMA

• On some systems

access time from CPU00 to

GPU0

 ≠

access time from CPU10 to

GPU0

• Latency and achievable

bandwidth are affected

• Solution: automatic affinity

mapping for user processes

depending on the GPUs used

IOH

GPU0

host memory host memory

IOH

GPU1

00 01

02 03

10 11

12 13

GPU memory GPU memory

QPI, FSB, HT

QPI, FSB, HT

PCIe PCIe

Host to device Bandwidth Comparison

0

500

1000

1500

2000

2500

3000

3500

0.000001 0.0001 0.01 1 100

b
a

n
d

w
id

th
 (

M
b

y
te

s
/s

e
c

)

packet size (Mbytes)

Lincoln

AC (no affinity mapping)

AC (with affinity
mapping)

Efficient GPU resources sharing

• In a typical cluster environment,

user obtains exclusive access to

the entire node

• A typical GPU cluster node has

few (2-4) GPUs

• But a typical GPU cluster

application is designed to utilize

only one GPU per node
• Giving access to the entire cluster node

is wasteful if the user only needs one

GPU

• Solution: allow user to specify how

many GPUs his application needs

and fence the remaining GPUs for

other users

IOH

GPU0

IOH

GPU1

00 01 10 11

GPU memory GPU memory

GPU0

GPU memory

GPU1

GPU memory

CUDA/OpenCL Wrapper

• Basic operation principle:
• Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL

functions, e.g. {cu|cuda}{Get|Set}Device, clGetDeviceIDs, etc.

• Transparent operation

• Purpose:
• Enables controlled GPU device visibility and access, extending resource

allocation to the workload manager

• Prove or disprove feature usefulness, with the hope of eventual uptake or
reimplementation of proven features by the vendor

• Provides a platform for rapid implementation and testing of HPC relevant
features not available in NVIDIA APIs

• Features:
• NUMA Affinity mapping

• Sets thread affinity to CPU core(s) nearest the gpu device

• Shared host, multi-gpu device fencing
• Only GPUs allocated by scheduler are visible or accessible to user

• GPU device numbers are virtualized, with a fixed mapping to a physical device
per user environment

• User always sees allocated GPU devices indexed from 0

CUDA/OpenCL Wrapper

• Features (cont’d):

• Device Rotation (deprecated)

• Virtual to Physical device mapping rotated for each process accessing a

GPU device

• Allowed for common execution parameters (e.g. Target gpu0 with 4

processes, each one gets separate gpu, assuming 4 gpus available)

• CUDA 2.2 introduced compute-exclusive device mode, which includes

fallback to next device. Device rotation feature may no longer needed.

• Memory Scrubber

• Independent utility from wrapper, but packaged with it

• Linux kernel does no management of GPU device memory

• Must run between user jobs to ensure security between users

• Availability

• NCSA/UofI Open Source License

• https://sourceforge.net/projects/cudawrapper/

wrapper_query utility

• Within any job environment, get details on what the wrapper library is doing

showgputime

• Shows percent time CUDA linked processes utilized GPU

• Displays last 15 records (showallgputime shows all)

• Requires support of cuda_wrapper implementation

Are GPUs reliable?

• No ECC in initial product releases

• Not a big deal when a GPU is used for what it was indented:

image rendering

• Could be a problem when executing a scientific application

• Can we trust the computed results?

• How do we know the results are correct?

• Fermi architecture now has ECC memory protection

• However, two years ago it was not clear if NVIDIA was

going to add ECC

• We have done a GPU memory reliability study

CUDA Memtest

• Features

• Full re-implementation of every test included in memtest86

• Random and fixed test patterns, error reports, error addresses, test specification

• Includes additional stress test for software and hardware errors

• Email notification

• Usage scenarios

• Hardware test for defective GPU memory chips

• CUDA API/driver software bugs detection

• Hardware test for detecting soft errors due to non-ECC memory

• Stress test for thermal loading

• No soft error detected in 2 years x 4 gig of cumulative runtime

• But several Tesla units in AC and Lincoln clusters were found to have hard

memory errors (and thus have been replaced)

• Availability

• NCSA/UofI Open Source License

• https://sourceforge.net/projects/cudagpumemtest/

GPU Node Pre/Post Allocation Sequence

• Pre-Job (minimized for rapid device acquisition)

• Assemble detected device file unless it exists

• Sanity check results

• Checkout requested GPU devices from that file

• Initialize CUDA wrapper shared memory segment with unique key for user

(allows user to ssh to node outside of job environment and have same gpu

devices visible)

• Post-Job

• Use quick memtest run to verify healthy GPU state

• If bad state detected, mark node offline if other jobs present on node

• If no other jobs, reload kernel module to “heal” node (for CUDA driver bug)

• Run memscrubber utility to clear gpu device memory

• Notify of any failure events with job details via email

• Terminate wrapper shared memory segment

• Check-in GPUs back to global file of detected devices

Are GPUs power-efficient?

• GPUs are power-hungry

• GTX 480 - 250 W

• C2050 - 238 W

• But does the increased power consumption justify their

use?

• How much power do jobs use?

• How much do they use for pure CPU jobs vs. GPU-accelerated

jobs?

• Do GPUs deliver a hoped-for improvement in power efficiency?

• How do we measure actual power consumption?

• How do we characterize power efficiency?

Power Profiling Tools

Goals:

• Accurately record power consumption of GPU and workstation

(CPU) for performance per watt efficiency comparison

• Make this data clearly and conveniently presented to application

users

• Accomplish this with cost effective hardware

Solution:

• Modify inexpensive power meter to add logging capability

• Integrate monitoring with job management infrastructure

• Use web interface to present data in multiple forms to user

Power Profiling Hardware

• Tweet-a-Watt • Wireless receiver (USB)

• AC01 host and

associated GPU unit are

monitored separately by

two Tweet-a-Watt

transmitters

• Measurements are

reported every 30

seconds

• < $100 total parts

Power Profiling Walk Through

• Submit job with prescribed resource (powermon)

• Run application as usual, follow link(s)

Power Profiling Walk Through

Power Profiling Walk Through

• Mouse-over value displays

• Under curve totals displayed

• If there is user interest, we may support calls to add custom tags from

application

AC GPU Cluster Power Considerations

State Host Peak
(Watt)

Tesla Peak
(Watt)

Host
power factor

(pf)

Tesla power
factor (pf)

power off 4 10 .19 .31

start-up 310 182

pre-GPU use idle 173 178 .98 .96

after NVIDIA driver module
unload/reload(1)

173 178 .98 .96

after deviceQuery(2) (idle) 173 365 .99 .99

GPU memtest #10 (stress) 269 745 .99 .99

after memtest kill (idle) 172 367 .99 .99

after NVIDIA module
unload/reload(3) (idle)

172 367 .99 .99

VMD Madd 268 598 .99 .99

NAMD GPU STMV 321 521 .97-1.0 .85-1.0(4)

NAMD CPU only ApoA1 322 365 .99 .99

NAMD CPU only STMV 324 365 .99 .99

1. Kernel module unload/reload does not increase Tesla power
2. Any access to Tesla (e.g., deviceQuery) results in doubling power consumption after the application exits

3. Note that second kernel module unload/reload cycle does not return Tesla power to normal, only a complete reboot can

4. Power factor stays near one except while load transitions. Range varies with consumption swings

Power Profiling Hardware (2)

• Improved accuracy

• Increased

granularity (every

.20 seconds)

• Current flexible

• Voltage flexible

• 4 monitored ports

• ~$50 total parts

Application Power profile example

• No GPU used

• 240 Watt idle

• 260 Watt computing on a

single core

• Computing on GPU

• 240 Watt idle

• 320 Watt computing on a

single core

Improvement in Performance-per-watt

Application t (sec) ta (sec) s p (watt) pa (watt) e

NAMD 6.6 1.1 6 316 681 2.78

VMD 1,465.2 57.5 25.5 299 742 10.48

QMCPACK 61.5 314 853 22.6

MILC 77,324 3,881 19.9 225 555 8.1

e = p/pa*s

p – power consumption of non-accelerated application

pa – power consumption of accelerated application

s – achieved speedup

Speedup-to-Efficiency Correlation

• The GPU consumes roughly double the CPU power, so

a 3x GPU is require to break even

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

p
e

rf
o

rm
an

ce
-p

e
r-

w
at

t

speedup factor

300-800

300-600

300-700

Applications

• Applications

• Cosmology

• Computational

chemistry

• Quantum

chromodynamics

• Data mingin

Lattice QCD: MILC

• Simulation of the 4D SU(3) lattice gauge

theory

• Solve the space-time 4D linear system

𝑀𝜙 = 𝑏 using CG solver
• 𝜙𝑖,𝑥 and 𝑏𝑖,𝑥 are complex variables carrying a

color index 𝑖 = 1,2,3 and a 4D lattice coordinate

𝑥.

• 𝑀 = 2𝑚𝑎𝐼 + 𝐷

• 𝐼 is the identity matrix

• 2𝑚𝑎 is constant, and

• matrix 𝐷 (called “Dslash” operator) is given by

Dx,i;y,j = U𝑥,𝜇
𝐹 𝑖,𝑗

δy,x+μ − U𝑥−𝜇 ,𝜇
𝐹 † 𝑖,𝑗

δy,x−μ

4

μ=1

+ U𝑥,𝜇
𝐿 𝑖,𝑗

δy,x+3μ

4

μ=1

− U𝑥−3𝜇 ,𝜇
𝐿 † 𝑖,𝑗

δy,x−3μ

Collaboration with Steven Gottlieb from U Indiana, Bloomington

GPU Implementation strategy:

optimize for memory bandwidth

• 4D lattice

• flop-to-byte ratio of the Dslash

operation is 1,146/1,560=0.73

• flop-to-byte ratio supported by

the C2050 hardware is

1,030/144=7.5

• thus, the Dslash operation is

memory bandwidth-bound

• spinor data layout

• link data layout

... ...

6V floats

first even
site

first odd site

spinor data
layout in host
(CPU) memory

...

... ...

spinor data
layout in the
device (GPU)

memory

float2(½ V + pad) * sizeof(float2)
bytes

spinor array

...

...

link data
layout in host
(CPU) memory

... ...

link data
layout in the
device (GPU)

memory

link arrays

...

...

...

+X

+Y

+Z

+T

18 floats

(½ V + pad) * sizeof(float2)
bytes

 -Y

 -
Z

 -X +X

 +
Z

 +
Y

 +T -T

site,
holds spinor

(3x1 complex vector)

links,
4D gauge field of

3x3 complex matrix

Parallelization strategy: split in T dimension

• 4D lattice is partitioned in the time

dimension, each node computes T

slices

• Three slices in both forward and

backward directions are needed

by the neighbors in order to

compute new spinors

• dslash kernel is split into

• interior kernel which computes the

internal slices (2<t<T-3) of sub-

lattice and the space contribution

of the boundary sub-lattices, and

• exterior kernel which computes

the time dimenstion contribution

for the boundary sub-lattice. The

exterior kernel depends on the

data from the neighbors.

• The interior kernel and the

communication of boundary data

can be overlapped using CUDA

streams

Results for CG solver alone

0

10

20

30

40

50

60

2 4 8 16

G
F

lo
p

s
/n

o
d

e

of nodes

CG performance

DP GPU

mixed GPU

DP 4-core CPU

0

1

2

3

4

5

6

7

8

9

10

2 4 8 16

s
p

e
e
d

u
p

 (
ti

m
e

s
)

of nodes

CG speed relative to DP CPU

DP GPU

mixed GPU

10

100

1000

10000

2 4 8 16
ru

n
ti

m
e
 (

s
)

of nodes

CG time (sec)

DP GPU

mixed GPU

DP CPU

one CPU node = 8 Intel Nehalem 2.4 Ghz CPU cores

one GPU node = 1 CPU core + 1 C2050 GPU
lattice size 283x96

Results for entire application

(Quantum Electrodynamics)

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16

ru
n

ti
m

e
 (

s
)

of nodes

Total runtime (sec)

DP GPU

mixed GPU

DP CPU

0

1

2

3

4

5

6

7

2 4 8 16

s
p

e
e
d

u
p

 (
ti

m
e
s
)

of nodes

Application speedup (times)

DP GPU

mixed GPU

DP CPU

References

• GPU clusters
• V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu, GPU Clusters for High-

Performance Computing, in Proc. IEEE International Conference on Cluster Computing, Workshop on Parallel

Programming on Accelerator Clusters, 2009.

• M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington, W. Hwu, QP: A Heterogeneous Multi-

Accelerator Cluster, In Proc. 10th LCI International Conference on High-Performance Clustered Computing – LCI'09, 2009.

• Memory reliability
• G. Shi, J. Enos, M. Showerman, V. Kindratenko, On testing GPU memory for hard and soft errors, in Proc. Symposium on

Application Accelerators in High-Performance Computing – SAAHPC'09, 2009

• Power efficiency
• J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips, Quantifying the Impact

of GPUs on Performance and Energy Efficiency in HPC Clusters, In Proc. Work in Progress in Green Computing, 2010.

• Applications
• S. Gottlieb, G. Shi, A. Torok, V. Kindratenko, QUDA programming for staggered quarks, In Proc. The XXVIII International

Symposium on Lattice Field Theory – Lattice'10, 2010.

• G. Shi, S. Gottlieb, A. Totok, V. Kindratenko, Accelerating Quantum Chromodynamics Calculations with GPUs, In Proc.

Symposium on Application Accelerators in High-Performance Computing - SAAHPC'10, 2010.

• A. Titov, V. Kindratenko, I. Ufimtsev, T. Martinez, Generation of Kernels to Calculate Electron Repulsion Integrals of High

Angular Momentum Functions on GPUs – Preliminary Results, In Proc. Symposium on Application Accelerators in High-

Performance Computing - SAAHPC'10, 2010.

• G. Shi, I. Ufimtsev, V. Kindratenko, T. Martinez, Direct Self-Consistent Field Computations on GPU Clusters, In Proc. IEEE

International Parallel and Distributed Processing Symposium – IPDPS, 2010.

• D. Roeh, V. Kindratenko, R. Brunner, Accelerating Cosmological Data Analysis with Graphics Processors, In Proc. 2nd

Workshop on General-Purpose Computation on Graphics Processing Units – GPGPU-2, pp. 1-8, 2009.

