
High-Performance Reconfigurable Computing Application
Programming in C

Volodymyr Kindratenko and David Pointer‡

National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

1205 W. Clark St. Room 1008
 Urbana, IL 61801

{kindr, pointer}@ncsa.uiuc.edu

David Caliga
SRC Computers, Inc.

4240 N. Nevada Avenue
Colorado Springs, CO 80907

caliga@srccomp.com

1 Introduction
At NCSA, scientists aggressively seek floating point application performance improvements far
beyond those implied by Moore’s Law. The Innovative Systems Lab at NCSA was created to
explore emerging computer technologies that have the potential to serve the application
scientists’ mid- to long-term performance requirements. These technologies include cell
processing, specialized ASIC application coprocessors, multicore processors, graphics
accelerators used for general purpose applications, and reconfigurable computing (RC), that is,
computers that utilize devices such as Field Programmable Gate Arrays (FPGA) as processor
elements. In this white paper, we focus on reconfigurable computing application programming.

SRC Computers, Inc. is an early pioneer in the field of reconfigurable computing. SRC’s work
is based on the belief that in the near future, primarily because of processing costs and requisite
volumes, only high end microprocessors and reconfigurable devices will be built with leading
edge process geometries. The classic von Neumann load/store architecture is very good for
some tasks, but seems to have serious scalability issues. On the other hand, reconfigurable
devices have proven to be very scalable for a large class of applications, as well as having
technology performance increase curves that far exceed Moore’s law1. It is this realization that
led SRC to develop its IMPLICIT+EXPLICT Architecture2. SRC has been developing
systems based on this architecture since 1997. This architecture combines both traditional

‡ Corresponding author
1 K. Underwood, FPGAs vs. CPUs: Trends in Peak Floating Point Performance, Proceedings of the 2004
ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, Monterey (CA), February 22-24,
2004, pp 171-180.
2 IMPLICIT+EXPLICIT Architecture White Paper available by request at
http://www.srccomp.com/WhitePapers.htm

1/10/2006 HPRC Application Programming in C (v1.0) Page 1 of 33

microprocessors and reconfigurable processors, called MAP, as peers on a shared memory, and
has yielded orders of magnitude performance increases for many applications.

Since shipping their first system in 1998, SRC has continued to enhance the overall system
hardware implementation, as well as developing a complete high level language programming
environment called Carte. Carte eliminates the need for the programmers to have an in-depth
hardware design knowledge by allowing them to use standard ANSI C and FORTRAN, as well
as standard programming constructs, to program both the standard microprocessors and the MAP
processors. Carte also includes a complete debugging environment to facilitate program
development in way that is very familiar to programmers.

For the past 15 years, FPGA designs were implemented by hardware engineers using a
specialized hardware description language (HDL), like Verilog or VHDL. This is appropriate
for embedded applications, but with recent improvements in FPGA technology there is great
potential for reconfigurable computing to provide scientific application performance beyond
Moore’s Law. Industry has responded by developing several C and C-like languages that target
FPGAs instead of CPUs. After all, application scientists should not be expected to become
hardware engineers in order to utilize a new computer technology.

At the same time, application programmers and scientists who target reconfigurable systems
need to be aware that a C compiler on these machines is not “just another C compiler”. New
system architectures require that the programmer learn a new set of best practices and rules of
thumb (“application programming”) that work well for the new architecture. Put another way,
the application programming style that works well for scalar CPU programming will not map
well to a combined CPU/FPGA reconfigurable architecture. At NCSA, we are working closely
with application scientists and industry application specialists to develop effective programming
styles and best practices on reconfigurable systems. This paper introduces reconfigurable system
architecture and describes our approach to reconfigurable system application programming.

1.1 Why Reconfigurable Computing?
Learning a new architecture and a new programming style is not a trivial task, and so a
reasonable question might be why bother with reconfigurable computing in the first place? The
simple answer is that reconfigurable systems offer potential application performance
improvements beyond those predicted by Moore’s Law. The potential lies in the nature of the
architecture: an application programmer may develop a dedicated, special purpose hardware
compute engine that exploits the concurrency inherent in their application. This is exactly what
drives the Application Specific Integrated Circuit (ASIC) development of devices such as Grape1
and Clearspeed2. But while ASICs take months to develop, have a substantial tooling cost, and
can not be changed, FPGA based designs take days to weeks to develop, have no tooling cost,

1 T. Kuberka, A. Kugel, R. Männer, H. Singpiel, R. Spurzem, and Ralf Klessen, AHA-GRAPE: Adaptive
Hydrodynamic Architecture – GRAvity PipE, Proceedings of The 1999 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 99), Las Vegas (NV) USA June 28-July 1, 1999, pp
1189-1195.

2 Clearspeed Technology plc, CSX Architecture Whitepaper, PN-1105-0003, San Jose (CA) USA, 2005.

1/10/2006 HPRC Application Programming in C (v1.0) Page 2 of 33

and can easily be changed. Even better, ASIC design requires extensive hardware engineering
expertise not required for reconfigurable system application development.

1.2 Concurrency
We state in section 1.1 that an FPGA may be used to exploit the concurrency inherent in an
application’s algorithm. What do we mean by concurrency? There are two types of concurrency
that may be inherent in an algorithm: deep parallelism and wide parallelism.

Deep parallelism (Figure 1), also known as pipelining or instruction level parallelism, is used
when a function’s set of operations is broken up into stages, where each stage executes in a
single clock cycle and each stage’s input depends solely on the results of the previous stage. The
latency of the pipeline is the number of clock cycles needed to get the first result from this set of
pipelined operations and is equal to the number of pipeline stages. The good news is that as long
as the pipeline has input data available every single clock cycle, a result is generated every single
clock cycle after the latency penalty is paid. If there is a lot of data relative to the pipeline
latency, then the time to get the first result appears insignificant. Put another way, the processing
time of a well-designed pipeline is O(N+L), where N is the size of the data to be processed and L
is the number of stages in the processing pipeline. If N is large relative to L, then the processing
time approaches O(N).

N
data

Stage 1 operations
Stage 2 operations
Stage 3 operations
Stage 4 operations

Stage L operations

result

Stage 5..L-1

Figure 1 - Deep Parallelism

It is good to note that the SRC compiler technology automatically pipelines a set of operations
inside a loop unless directed otherwise by the programmer.

Wide parallelism (Figure 2), also known as data level parallelism, simply duplicates a single
pipeline and splits the input data across the duplicated pipelines. This is true parallelism, as the
pipelines are actually implemented as separate entities in FPGA hardware and execute
simultaneously. This, of course, only works when the input data consists of independent
elements. The execution time of this type of parallelism is O((N+L)/P) where N is the size of the
data to be processed, L is the number of stages in the processing pipeline and P is the number of
independent pipelines. The ideal number of independent pipelines varies from algorithm to
algorithm, but in general, we run out of FPGA resources before we reach an ideal pipeline count.

1/10/2006 HPRC Application Programming in C (v1.0) Page 3 of 33

N/P
data

Stage 1 operations
Stage 2 operations
Stage 3 operations
Stage 4 operations

Stage L operations

result

Stage 5..L-1

Figure 2 - Wide Parallelism

This level of algorithm parallelism needs to be explicitly implemented by the programmer and
requires the use of SRC compiler directives.

1.3 CPU vs. FPGA Clock Speeds
There is an interesting question relating current FPGA clock speeds and CPU clock speeds. At
present, a typical CPU runs at 3 GHz, while a typical FPGA runs at 100 MHz (Figure 3). This
speed mismatch appears crippling to the FPGA, since the CPU can execute 30 one cycle serial
operations in the same time that it takes the FPGA to execute just 1 one cycle serial operation.
But consider this: a CISC CPU takes many one cycle clocks to execute a single instruction. The
CPU also needs to service interrupts, executes time slices for all of the system processes, and has
memory latency and register spill effects. On the other hand, the FPGA is a dedicated algorithm
specific coprocessor that does nothing but generate results for an application. To date at NCSA,
we have found that for large real-world data sets with many pipelined single precision floating
point operations, combined CPU/FPGA execution may achieve from 3x to 40x performance
improvement over the CPU execution alone.

3 GHz
CPU

100MHz
FPGA

30 one-
cycle serial
operations

1 one-cycle
serial

operation
Figure 3 - CPU vs. FPGA Clock Speeds

1/10/2006 HPRC Application Programming in C (v1.0) Page 4 of 33

1.4 How to get started with Reconfigurable Computing?
Simply stated, the first step is to find a core algorithm in an application and completely
understand the required data movement into and out of the algorithm.

A scientific application code typically has at least one computationally intensive algorithm
embedded in it. Presumably, this algorithm is where the application spends most of its execution
time. Perhaps the algorithm calculates forces between atoms or calculates the distance between
background and foreground pixels or performs string matching. Regardless, an algorithm may
be abstracted from the application so that it appears in the algorithm form shown in Figure 4: a
result or a set of results is obtained by a series of operations on the function input operands.

Operations
Result = f(a,b,c,d,e)

Operands
(a,b,c,d,e) Result

Figure 4 - Abstract Algorithm Model

Once the programmer has a good understanding of the operand data movement into the
algorithm, the algorithm operations on the operand data, and the movement of the resulting data,
they may begin to map their algorithm to reconfigurable system architecture.

For instance, consider the 2D image distance transform algorithm1 used in many image
processing applications in which image regions need to be isolated for subsequent processing.
The algorithm is simply stated: for each background pixel, calculate the distance to the nearest
foreground pixel. Thus, the resulting pixel value for each background pixel is the distance from
that background pixel to the nearest foreground pixel.

So, in its simplest form, the distance transform algorithm calculates the distance to all pixels in
the foreground for a single given background pixel. This simple form is repeated for each
background pixel. Described programmatically,

int m,n
long bg_x[BG_MAX], bg_y[BG_MAX]
long fg_x[FG_MAX], fg_y[FG_MAX]
float d, distance[BG_MAX]

for m = 0 to BG_MAX-1

 for n = 0 to FG_MAX-1
 d = calculate_distance(bg_x[m], bg_y[m], fg_x[n], fg_y[n])
 if(d < distance[m])
 distance[m] = d

The input operands to the algorithm are the two lists of pixels: background pixel coordinates and
foreground pixel coordinates. A result is obtained for a background pixel m after the distance to
all foreground pixels from pixel m have been calculated. The operations in the
“calculate_distance” function are from the Euclidian distance equation

1 P. E. Danielsson, "Euclidean distance mapping," Comput. Graphics Image Processing, vol. 14, pp. 227-248, 1980.

1/10/2006 HPRC Application Programming in C (v1.0) Page 5 of 33

22)__()__(yfgybgxfgxbgd −+−= (1)

At this point, we understand the algorithm’s operand data input movement, the algorithm’s
operations, and the resulting data output movement. We will continue to use this algorithm as a
reconfigurable system design example throughout this paper.

2 Reconfigurable System Architecture
A simple view of reconfigurable system architecture is shown in Figure 5. One or more FPGAs
and dedicated FPGA memories are connected to CPU main memory via some high-bandwidth
interface. Arrays of data from the CPU memory are transferred over this interface to the FPGA
memory and streamed through the computation engine(s) inside the FPGA. Results of this
computation are transferred to FPGA memory and streamed back to CPU memory.

Reconfigurable System

CPU

Memory FPGA and
Memory

Figure 5 - Simple Reconfigurable System Architecture

2.1 What is an FPGA?
A computer hardware designer has a very detailed and specific view of the inside of FPGAs.
However, our focus is on FPGA application programming with high level languages, so we will
omit a great deal of detail and focus only on the aspects of FPGAs important to a scientific
application developer.

An FPGA is an integrated circuit in some sense very similar to a CPU. A CPU is an integrated
circuit that contains many functional units used to interpret and execute program instructions.
An FPGA, on the other hand, is essentially a collection of unconnected simple and complex
functional units in hardware – the application programmer’s code defines the connections among
the functional units. Some of these hardware functional units are very complex and specific – 18
bit integer multipliers, for example. Most of the functional units are no more than simple
hardware building blocks that may be interconnected to make more complex functional units.

The idea of CPU instruction execution does not exist in FPGAs. Rather, the functional blocks
are defined and interconnected by the development process to provide the hardware units used to
directly execute the calculations and operations specified by the programmer. Unlike a CPU, all
of the hardware functional units are specified by the programmer – the FPGA is completely
dedicated to solving the programmer’s algorithm. Even better, all of the hardware functional
units in a programmed FPGA may execute in parallel.

Before moving on, let’s quickly outline the development process for FPGAs in reconfigurable
systems. An algorithm’s operations and data movement are specified in C by the programmer.

1/10/2006 HPRC Application Programming in C (v1.0) Page 6 of 33

This embodiment of the algorithm is compiled to some intermediate hardware description
language and given to the FPGA vendor’s tools. These tools perform the functional unit
placement in the FPGA and determine the functional units interconnect (“place and route”).
After place and route, which can take some time, the FPGA vendor tools produce an FPGA
configuration file, or a “bit file”. This bit file may be loaded onto the FPGA (“programming the
FPGA”) to set the functional unit interconnect in the target device. After programming the
FPGA is complete, is available for use until the system is powered down or a different bit file is
programmed into the FPGA.

The programmer need only be concerned about the very first step – using C to specify an
algorithm’s operations and data movement. The intermediate steps are usually hidden from the
programmer and handled by the development tools, although this may vary from vendor to
vendor.

2.2 FPGA and Memory
FPGA local memory is typically organized into several banks attached to the FPGA. In the SRC
MAPstation MAP® Series C module, there are six banks of 64 bit wide memory around two
FPGAs. (Either FPGA may access any memory using the compiler’s FPGA synchronization
primitives.) For this discussion, we will use all six banks and one FPGA. Five banks will
contain operands and one bank will contain results. The FPGA calculates each element of the
result array from some function of each element of the five input arrays, as shown in Figure 6.
The full operation of the algorithm starts with the transfer of arrays 0 through 4 from allocated
areas of CPU memory to five banks of the FPGA memory. Data from these five banks stream
simultaneously into the FPGA and the function f in the FPGA is applied to each set of data from
the five memory banks. After some calculation latency, results from function f start filling the
result memory bank and the contents of the result memory bank is transferred to allocated CPU
memory.

CPU Memory

FPGA Memory

FPGA Result[i]=f(Array0..4[i])

Array0 Array1 Array2 Array3 Array4 Result

Array0 Array1
Array2

Array3
Array4

Result

Figure 6 - FPGA and Memory Example

The FPGA and FPGA memory are speed balanced, that is, the FPGA can read any number of
attached memory banks simultaneously. In our example in Figure 6, each memory bank is 8
bytes (64 bits) wide and the FPGA in the MAP® Series C operates at 100 MHz (10 nS). This
means that with five memory banks used to supply input data to the FPGA, the input data
bandwidth to the FPGA is 4 GB/s.

1/10/2006 HPRC Application Programming in C (v1.0) Page 7 of 33

In our ongoing image distance transform example design started in section 1.4, the CPU memory
will have several arrays allocated as shown in Figure 7.

CPU Memory
bg_x[BG_MAX]

distance[BG_MAX]

bg_y[BG_MAX]

fg_x[FG_MAX]

fg_y[FG_MAX]

Figure 7 - Distance Transform CPU Memory

Each result produced by the FPGA and stored in the distance array is some function (described in
section 1.4) of the two background and two foreground arrays. Since the input arrays are made
up of 32 bit sized elements, they may be packed two to a 64 bit container. We will need three of
the six FPGA memory banks as shown in Figure 8. All the background pixels’ x and y
coordinates are packed into FPGA memory bank A, all the foreground pixels’ x and y
coordinates are packed into FPGA memory bank B, and half of FPGA memory bank C is
reserved for the shortest distance results.

FPGA Memory (Banks D, E, F unused)

distance[m]=f(bg_x[m], bg_y[m], fg_x[..], fg_y[..])
FPGA

bg_x[..] distance[..]
Bank CBank A Bank B

bg_y[..] fg_x[..] fg_y[..] unused

Figure 8 - Distance Transform FPGA Memory

This is why understanding the data movement for an algorithm is important in reconfigurable
system design: the programmer is responsible for programming the data movement to and from
the FPGA memory. Also, different systems have different bank counts and perhaps even
different bit widths for that system’s FPGA memory. A programmer has to be keenly aware of
the FPGA memory architecture for their target reconfigurable system.

2.3 FPGA and Memory Overhead
In our distance transform example, we’ve already modified our algorithm because of FPGA
memory considerations. The original program description from section 1.4 has become

long bg_x[BG_MAX], bg_y[BG_MAX]
long fg_x[FG_MAX], fg_y[FG_MAX]
float distance[BG_MAX]

pack bg_x and bg_y array elements into BG_MAX elements of a 64 bit array
transfer resulting packed array to FPGA memory bank A
pack fg_x and fg_y array elements into FG_MAX elements of a 64 bit array
transfer resulting packed array to FPGA memory bank B

 start FPGA processing and wait for completion

1/10/2006 HPRC Application Programming in C (v1.0) Page 8 of 33

 transfer and unpack lower 32 bits from FPGA memory bank C into distance array

A reasonable question at this point is why we didn’t rework our algorithm into something like

int m
long bg_x[BG_MAX], bg_y[BG_MAX]
long fg_x[FG_MAX], fg_y[FG_MAX]
float d, distance[BG_MAX]

pack fg_x and fg_y array elements into FG_MAX elements of a 64 bit array
transfer resulting packed array to FPGA memory bank B
for m = 0 to BG_MAX-1
 transfer bg_x[m] and bg_y[m] to FPGA memory bank A
 start FPGA processing and wait for completion
 transfer and unpack lower 32 bits from FPGA memory bank C into distance[m]

The reason that we want to combine the algorithm inner and outer loops into one FPGA function
is because of the FPGA and memory overhead (Figure 9) inherent in reconfigurable systems.
Every time the FPGA processing is invoked from the program executing on the CPU side, there
is a system-dependent time cost that consists of the function call overhead and data movement
overhead. In our questionable algorithm where the inner loop “calculate_distance” function is
replaced by, the first call to the FPGA is expensive in terms of time: milliseconds from the first
function call overhead and the foreground array transfer time. Any calls to the FPGA thereafter
cost less time, certainly, but remember that this FPGA function will be called for each
background pixel. If the function call overhead is 1 microsecond and there are 1,000,000
background pixels, we’ve wasted one full second of processing time in unnecessary function call
overhead. The goal of the application programmer is to get an application speedup and every
possible time-saving trick counts. This is why it is best to port both the algorithm inner and
outer loops to FPGA, run the FPGA processing once in order to minimize the time wasted in
function call overhead.

Function call overhead O(mS) initial, O(uS) thereafter

Move data from CPU
memory to FPGA memory

Compute

Move result from FPGA
memory to CPU memory

O(word transfer time * word count)

O(word transfer time * word count)

Figure 9 - FPGA and Memory Overhead

Also, in general, it is good practice to move all the data needed by the FPGA computations from
CPU memory once and move all of the computational results back to CPU memory once. The
more time an algorithm spends computing relative to overhead time, the better the algorithm
performance acceleration.

1/10/2006 HPRC Application Programming in C (v1.0) Page 9 of 33

2.4 FPGA Memory Considerations
Our image distance transform example fits well into the SRC MAP® Series C FPGA memory
architecture, but what about applications with function operands that do not fit exactly into six 64
bit wide memory banks? Consider Figure 10, where we have an algorithm that produces two 64
bit results from two different functions of seven 64 bit input arrays. All of arrays 0, 1, 2, and 6
are stored before arrays 3, 4, and 5.

FPGA Memory Interface

FPGA
Result0[i]=f(Array0..6[i])
Result1[i]=f(Array0..6[i])

Result0Array0 Array1 Array2
Array3 Array4 Array5

Result1Array6

Figure 10 - Difficult FPGA Memory Data Placement

With the CPU data to FPGA memory mapping shown here, all of the required function operands
are not simultaneously available to the FPGA. In fact, all data elements of four of the arrays, 0,
1, 2, and 6, must be clocked into and stored in the FPGA before the remaining three arrays, 3, 4,
and 5, become available to the FPGA. This memory mapping will likely yield an application
slowdown.

Sometimes using the CPU to interleave the operand data array elements in CPU memory first
and then transferring the interleaved data to the FPGA memory may yield an overall application
performance improvement. The data are interleaved so that the first element of each array is
striped across the available FPGA memory banks; the second element of each array is added
next, and so on. This results in an FPGA memory layout shown in Figure 11, where all of the
data is available for a single result every two clock cycles.

FPGA Memory Interface

FPGA
Result0[i]=f(Array0..6[i])
Result1[i]=f(Array0..6[i])

Result0Array0[0] Array1[0] Array2[0]
Array3[0] Array4[0] Array5[0]

Result1Array6[0]

Array0[1] Array1[1] Array2[1]
Array3[1] Array4[1] Array5[1]

Array6[1]

Figure 11 - Interleaved Operand Data Arrays

Another consideration arises if the original CPU application code contains data structures instead
of data arrays. These data structures must be “flattened” before transfer to FPGA memory
because the FPGA has no method to index into structure elements stored in FPGA memory.

1/10/2006 HPRC Application Programming in C (v1.0) Page 10 of 33

3 Application Metrics
With our work with scientific applications and real world data sets on reconfigurable systems,
we observe a set of qualitative metrics that tend to indicate whether or not an application’s
algorithm is a good candidate for porting to a reconfigurable architecture.

3.1 Operations per data
This metric is an indicator of the potential performance acceleration for an algorithm. In general,
the more calculations performed on a given set of data, the better. The central idea here is that
the time required to do the work on the data should exceed the time required to move the data to
the FPGA memory. Put another way, if a programmer has a design that spends most of its time
moving data to and from the FPGA rather than computing, they will not realize a performance
gain over CPU-only processing.

For example, consider the algorithm function

][][][ibiairesult += (2)

This could be implemented in an FPGA, of course, but consider the amount of data movement
relative to the operations. There are two input data arrays, one output data array, and one
operation. The bulk of the total FPGA processing time will be spent moving the input arrays to
FPGA memory and moving the output array back to CPU memory. There will likely be no
performance gain relative to CPU-only execution of this function.

A much better candidate algorithm for FPGA performance acceleration has many operations per
unit data. Even better is a set of calculations which has intermediate results that undergo further
calculations before the final result. For example, consider

])[arccos(][_
10*][][_

])[][(])[][(][22

itempibresult
itempiaresult

jbyjayibxiaxitemp

=
=

−+−=

 (3)

This is an excellent candidate for FPGA based performance acceleration. We have four input
data arrays, two output data arrays, one intermediate result, and eight operations. The SRC
compiler will take care of pipelining the calculations, of course, but this also illustrates the
advantage of hardware design: temp[i], result_a[i], and result_b[i] will result in three separate,
independent sections of hardware whose execution is fully overlapped. That is, calculations for
result_a[i], result_b[i], and temp[i+1] will start as soon as temp[i] is produced. This sort of
parallelism is literally impossible using scalar CPU-only execution: calculations for the result_a
and result_b arrays may not start until all of the temp calculations are performed and the
intermediate results pooled.

1/10/2006 HPRC Application Programming in C (v1.0) Page 11 of 33

The high operation per unit data metric for our distance transform algorithm (equation 1) of four
input arrays, one output array, and six operations imply that we will achieve some performance
improvement with this algorithm using an FPGA.

3.2 Results per data and data reuse
Given that many operations for an amount of data is a good thing for FPGA performance
acceleration, multiple results for a set of input data will also likely yield performance
improvement. For instance, if result array X is a function of the input arrays A, B and C; and
result array Y is a function of the input arrays A, B, and D, then the performance gains, if any,
will result from the simultaneous hardware generation of the two sets of results from the four
input arrays.

Another aspect of data reuse is reusing some portion of the input data sets many times for result
calculations. Our image distance transform is an example of this aspect of data reuse. Remember
that our distance transform algorithm is: for each background pixel, calculate the distance to all
foreground pixels and return the least distance. For all result calculations, the background pixel
coordinate list is used once and the foreground pixel coordinate list is reused for each
background pixel. The data movement from CPU memory to FPGA memory overhead cost is
only the time it takes to move the foreground and background coordinates lists once.

3.3 Data per latency
In section 1.2, we introduced the idea of pipelining as a method of exploiting concurrency in an
algorithm using reconfigurable computing. It is worth repeating here that the time required to
process data in a pipeline is O(N+L), where N is the number of data units to be processed and L
is the number of stages in the processing pipeline. If N is large relative to L, then the processing
time approaches O(N). This means that processing 1,000,000 units of data through a 160 stage
pipeline is much better in terms of overall performance than processing 100 units of data through
the same pipeline.

Remember that our distance transform algorithm is: for each background pixel, calculate the
distance to all foreground pixels and return the least distance. As will be shown in section 5, the
hardware pipeline for equation 1 has 90 stages. If we assume a small image size of 512x512
pixels with 131072 foreground pixels and 131072 background pixels, then there will be roughly
1.7x1010 pixel coordinate data points used in the calculations. From a qualitative data per
latency point of view, this distance transform algorithm is a good candidate for FPGA
performance acceleration.

3.4 Will the algorithm fit?
This concept comes from the idea of gaining algorithm performance improvements from both
deep and wide parallelism (section 1.2). Implementing deep processing pipelines, or
implementing multiple processing pipelines will consume FPGA resources very quickly. The
only useful method we’ve found that addresses this question is to implement a single algorithm
processing pipeline for a target FPGA and then estimate how many duplicate pipelines might fit.
We encourage programmer experimentation.

1/10/2006 HPRC Application Programming in C (v1.0) Page 12 of 33

A word of caution to FPGA programmers used to the virtually infinite resources available in
today’s CPU based compute systems: do not code up the entire application first and then expect
it to fit in a target FPGA. We find that it better to approach FPGA programming in a step-wise
fashion, progressing from very basic to more and more complex implementations. Even simple
algorithm coding benefits from five or six steps to the final implementation.

Remember that FPGAs in today’s reconfigurable systems have improved a great deal over even
two and three years ago. Just a few years ago it was difficult to fit a single floating point
operation into an FPGA. Today, most or all of a single floating point algorithm from an
application will likely fit into an FPGA. Indications from established and startup FPGA vendors
confirm that this trend will continue at roughly the same rate or better.

As we develop the implementation of our example distance transform algorithm in section 5, we
will discuss the FPGA resource utilization at each development step.

3.5 Table driven calculations
FPGAs are quite efficient at look-up table functions. These tables map well to FPGA chip
architectures and produce results within a single clock cycle.

For example, consider the electrostatic interaction calculation between two atoms, one of the five
force calculations used in the NAMD molecular dynamics simulation application1:

∑∑
>

=
i ij ij

ji
Coulomb r

qq
U

04πε (4)

Given a charge q for each atom type in your NAMD simulation, it is easy to build a look up table
that yields a π4ji qq value given two atoms i and j. It is easy to see that pre-calculated tables
will yield values more quickly than will a calculation engine for this sort of equation. Also, a
lookup table-based implementation will likely occupy less space than the actual calculation.
Even better from a performance point of view, for a given NAMD simulation run, these look up
tables values may be calculated and downloaded to the FPGA before the actual simulation run
begins.

3.6 CPU cache breakers
In general, any application with data sets that break CPU cache data availability is a good
candidate for reconfigurable computing. This includes data sets that are widely scattered in main
memory and data set sizes larger than cache sizes.

An example of this is an output histogram application with a large number of result bins. The
output bin values are updated in an unpredictable order. As the histogram bin count grows, it
becomes more and more likely that any given bin value will not be available in the cache when it
is needed, which results in a large number of high latency main memory accesses. On the other

1 J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel, L. Kale, and K.
Schulten, Scalable Molecular Dynamics with NAMD, Wiley Interscience (www.interscience.wiley.com), 26 May
2005.

1/10/2006 HPRC Application Programming in C (v1.0) Page 13 of 33

hand, the nature of FPGA programming dictates that all data is local to the FPGA before
processing, and so, available when it is needed.

4 Example Application Target System: SRC MAPstation
In Section 5, we will work through several development iterations of our image distance
transforms implementation on an FPGA. But before we get to the good stuff, since different
reconfigurable systems have different architectures that must be understood by the programmer,
we will first discuss the target machine for this example: the SRC MAPstation with a MAP®
Series C FPGA module. We also introduce the SRC Carte™ programming environment.

4.1 System Architecture
We will consider the overall system architecture of the SRC MAPstation, then the detailed
architecture of the MAP® Series C module that contains the FPGAs and FPGA memory.

4.1.1 SRC MAPstation
The SRC MAPstation (Figure 12) used for our example contains a commodity dual CPU board, a
MAP® Series C processor, and an 8 Gbyte common memory module, all interconnected with a
1.4 Gbyte/s low latency switch.

MemoryMemory

SRC HiSRC Hi--Bar 4Bar 4--port Switchport Switch

CommonCommon
MemoryMemoryMAP®MAP®--CCSNAP™SNAP™

µPµP

PCIPCI--XX

Empty PortEmpty Port

Dual XeonDual Xeon
2.8 GHz, 1 GB memory2.8 GHz, 1 GB memory

Figure 12 - SRC MAPstation Architecture

The SNAP™ Series B interface board is used to connect the commodity dual CPU board to the
Hi-Bar switch. The SNAP™ plugs directly into a CPU board’s DIMM memory slot so that it
can sustain a much higher data bandwidth than can the CPU’s I/O subsystem – roughly four
times higher sustained bandwidth than that available from 133 MHz PCI-X.

1/10/2006 HPRC Application Programming in C (v1.0) Page 14 of 33

While our system has the common memory module installed, it is not used in our example.
Applications on the SRC MAPstation might typically use this common memory as large
intermediate data storage between the CPU and FPGA memories.

4.1.2 MAP® Series C Processor Module
The MAP® Series C processor module (Figure 13) contains the two user FPGAs and the FPGA
memory among other things that are not important for the purpose of this discussion.

4.8 GB/s4.8 GB/s

2400 MB/s each2400 MB/s each GPIOGPIO

4.8 GB/s4.8 GB/s

1.4 GB/s1.4 GB/s
sustained sustained
payloadpayload

1.4 GB/s1.4 GB/s
sustained sustained
payloadpayload

OBMOBM
AA

OBMOBM
BB

OBMOBM
CC

OBMOBM
DD

OBMOBM
EE

OBMOBM
FF

DualDual--portedported
MemoryMemory
(4 MB)(4 MB) 4.8 GB/s4.8 GB/s

ControlControl
FPGAFPGA

User User
FPGA 1FPGA 1

User User
FPGA 0FPGA 0

192

64 6464646464

192

4.8 GB/s4.8 GB/s

108

64 6464646464

Figure 13 - SRC MAP® Series C Architecture

There are six banks of MAP® Series C on-board memory (OBM A-F). Each bank is 64 bits wide
and 4 Mbytes deep for a total of 24 Mbytes. The programmer is responsible for application data
transfer to and from these memories via the use of SRC programming macros invoked from the
FPGA application. All six of these on board FPGA memories are available to both of the user
FPGAs, although not at the same time. The OBM to user FPGA mapping and transfer of control
is also the responsibility of the programmer, through the use of SRC programming macros.

There is an additional 4 Mbyte of dual-ported memory dedicated solely to data transfer between
the two FPGAs. This is not directly visible to the programmer, but utilized through the use of
SRC programming macros.

The control FPGA is completely invisible to the programmer. It provides the interface logic
between the Hi-Bar switch and the MAP® Series C module.

1/10/2006 HPRC Application Programming in C (v1.0) Page 15 of 33

The two user FPGAs in the MAP® Series C are Xilinx Virtex-2 V6000 FPGAs. They each
contain 6 million equivalent logic gates, 144 dedicated 18x18 integer multipliers, and 324
Kbytes of internal dual-ported block RAM (BRAM).1 These FPGA elements are not directly
visible to the programmer, but are interconnected appropriately as determined by the
programmer’s C algorithm code, the SRC Carte™ programming environment tools, and the
Xilinx FPGA place and route tools. The FPGA clock rate of 100 MHz is set by the SRC
programming environment.

Our distance transform algorithm example in section 5 starts off with a CPU-only design, moves
on to a single FPGA design, then finally describes an implementation that utilizes both FPGAs in
the MAP® Series C.

4.2 SRC Carte™ Programming Environment
The programming environment (Figure 14) for the SRC MAPstation is highly integrated, and all
compilation targets are generated via a single makefile. The two main targets of the makefile are
a debug version of the entire program and the combined CPU code and FPGA hardware
programming files. The debug version is useful for code testing before the final time intensive
hardware place and route step. Intel icc compiler is used to generate both the CPU-only debug
executable and the CPU-side of the combined CPU/FPGA executable.

LinkerLinker

MAPMAP
LibraryLibrary

LinkerLinker

MAPMAP
LibraryLibrary

UnifiedUnified
executableexecutable

µP codeµP code
FPGA codeFPGA code

µP codeµP code

FPGA codeFPGA code

µP codeµP code

UnifiedUnified
executableexecutable

µP codeµP code
FPGA codeFPGA code

µP codeµP code

FPGA codeFPGA code

µP codeµP code

ApplicationApplication
SourceSource

(C or Fortran)(C or Fortran)

ApplicationApplication
SourceSource

(MAP C)(MAP C)

ApplicationApplication
SourceSource

(C or Fortran)(C or Fortran)

ApplicationApplication
SourceSource

(MAP C)(MAP C)

.o files.o files

.o files.o files

.o files.o files

.o files.o files

IntelIntel
compilercompiler

P&RP&R

MAPMAP
compilercompiler

MAPMAP
MacrosMacros

IntelIntel
compilercompiler

P&RP&R

MAPMAP
compilercompiler

MAPMAP
MacrosMacros

Intel

SRC

Xilinx

Intel

SRC

Xilinx
Figure 14 - SRC Carte™ Programming Environment

1 Xilinx, Inc., Virtex II Platform FPGAs: Complete Data Sheet, DS031 (v3.4), San Jose, CA, March 1, 2005, page 2.

1/10/2006 HPRC Application Programming in C (v1.0) Page 16 of 33

The SRC MAP® compiler is invoked by the makefile to produce the hardware description of the
FPGA design for final combined CPU/FPGA target executable. This intermediate hardware
description of the FPGA design is passed to the Xilinx ISE place and route tools, which produces
the FPGA bit file. Lastly, the linker is invoked to combine the CPU code and the FPGA
hardware bit file(s) into a unified executable.

5 Image Distance Transform Implementations
Image distance transform is an operation that is typically performed on binary images. The
result of the transform is a gray scale image in which each background pixel is replaced with the
shortest distance to the foreground pixels. Figure 15 shows an example of a binary image and its
distance transform. It is often used in image processing applications to isolate a portion of an
image for further processing.

Figure 15 – Initial (left) and Distance Transformed (right) Images

The simplest (and perhaps most inefficient) algorithm to compute the distance transform is as
follows: for each background pixel compute distances to every foreground pixel and use the
shortest found distance as the gray scale value that replaces that background pixel. Assuming
that half of the pixels belong to the foreground and half of the pixels belong to the background,
the overall compute time is O(N2), which is the worst-case scenario as far as the ratio of the
foreground and background pixels is concerned.

5.1 Algorithm Performance Considerations
Before moving on to the example algorithm development, we need to define and discuss the
performance measurement details. Figure 16 shows the three time components of the base line
algorithm execution on a CPU: getting the image ready for the distance transform, actually
computing the distance transform for each background pixel against all foreground pixels, and
then the transformed image assembly.

1/10/2006 HPRC Application Programming in C (v1.0) Page 17 of 33

image
decomposition

image
assemblyµP compute engine

distance compute time

overall computation time

Figure 16 - CPU-only Algorithm Performance Measurement

For the combined CPU and FPGA algorithm performance measurement (Figure 17), the image
decomposition and image assembly times are identical to the CPU-only measurements, but the
distance transform compute time on the FPGA has four components: the transform compute time
plus the FPGA overhead discussed in section 2.3. In general, CPU vs. CPU/FPGA performance
numbers needs to be examined with some care since some published algorithm performance
numbers only compare the distance compute time of CPU vs. FPGA and leave out the FPGA
usage overhead. We are concerned here with actual system performance comparisons, as these
complete performance numbers indicate the real benefit that a programmer may realize with a
reconfigurable system.

image
decomposition

image
assembly

DMA
data in

DMA
data out

FPGA
compute engine

Load
FPGA

overall computation time

distance compute time

distance compute and FPGA overhead time

Figure 17 - Combined CPU/FPGA Algorithm Performance Measurement

5.2 CPU implementation
Let us first consider a CPU implementation of the brute-force algorithm described in the
previous section. Figure 18 shows our image pixel row and column coordinate system for this
implementation. There are up to m rows and n columns of pixels. For convenience, we will map
the two dimensional image array of pixels into a one dimensional array such that a single
pixel img may be indexed as

[]img
],[ji jmi +* .

Distance calculations require pixel coordinates; therefore, we need to assemble separate lists of
pixel coordinates ji,

n*
 belonging to the foreground and background pixels. There can be no more

than foreground or background pixels. Therefore, we can allocate two arrays
containing

mMAXP =
MAXP*2 pixel coordinates each, which will be large enough to hold any possible

number of foreground and background pixel coordinates for the image of size MAXP pixels.
How much memory should we allocate for each pixel? That depends on the size of the image: if
the image size is less than 65536 pixels in both the i row and j column dimensions (and

1/10/2006 HPRC Application Programming in C (v1.0) Page 18 of 33

65536x65536 pixels is a HUGE image!), then 'short int' is sufficient. The background or
foreground pixel ji coordinates are stored in the appropriate list i first, then j. ,

Pixel column coordinate (j)
0 1 2 3 … m

P
ixel row

 coordinate (i)
0 1 2 3 …

 n

Figure 18 - Image Pixel Coordinates (img[i*m+j])

Now we know all we need to allocate the memory for the lists of the pixel coordinates and to
assemble the lists:

 // allocate memory for the foreground/background pixel coordinate lists
 short *fg_pixel = (short*)malloc(2*MAXP*sizeof(short));
 short *bg_pixel = (short*)malloc(2*MAXP*sizeof(short));

 // extract background and foreground pixels
 int fgc = 0; // foreground pixels coordinate count
 int bgc = 0; // background pixels coordinate count

 for (i = 0; i < n; i++) // for each pixel row i in image
 {
 for (j = 0; j < m; j++) // for all pixel columns in row i in image
 {
 if (img[i*m+j] == FOREGROUND) // if this is a foreground pixel
 {
 fg_pixel[fgc] = i; // store [i,j] pixel location in fg_pixel list
 fg_pixel[fgc+1] = j;
 fgc += 2;
 }
 else // else is a background pixel
 {
 bg_pixel[bgc] = i; // store [i,j] pixel location in bg_pixel list
 bg_pixel[bgc+1] = j;
 bgc += 2;
 }
 }
 }

Note that at the end of this procedure, we know how many foreground and background pixels are
stored: 2fgc in the foreground list and 2bgc in the background list.

1/10/2006 HPRC Application Programming in C (v1.0) Page 19 of 33

Now we can allocate memory for the computed distance results. We have 2fgc foreground
pixels in total and we should use 'float' as the result data type so that we do not compromise
accuracy in case if any follow-up calculations are to be performed:

 float *bg_distance = (float*)malloc((fgc/2)*sizeof(float));

At this point we are ready to perform the required distance calculations. Also, since this is the
computational core of our algorithm, we will measure how much time it takes to perform these
calculations:

 gettimeofday(&t0, NULL);

 for (i = 0; i < bgc; i += 2) // for each image background pixel
 {
 short x = bg_pixel[i];
 short y = bg_pixel[i+1];
 long d_min = 1000000;

 for (j = 0; j < fgc; j += 2) // store the distance to the nearest foreground pixel
 {
 short dx = x - fg_pixel[j];
 short dy = y - fg_pixel[j+1];
 long d = dx * dx + dy * dy;
 if (d < d_min)
 d_min = d;
 }
 bg_distance[i/2] = sqrt(d_min); // new gray scale value for this background pixel
 }

 gettimeofday(&t1, NULL);

The CPU distance calculation compute time is now simply:

 t1.tv_sec - t0.tv_sec + (t1.tv_usec - t0.tv_usec) * 1e-6

We still have to assemble the resulting image and free memory used in the process and free
unneeded memory:

 // add foreground pixels to the resulting image unchanged
 for (k = 0; k < fgc; k += 2)
 result_img[fg_pixel[k]* m+fg_pixel[k+1]] = FOREGROUND;

 // add background pixels as the distance to the nearest foreground pixel
 for (k = 0; k < bgc; k += 2)
 result_img[bg_pixel[k]* m+bg_pixel[k+1]] = (short) bg_distance[k/2];

 free(fg_pixel);
 free(bg_pixel);
 free(bg_distance);

1/10/2006 HPRC Application Programming in C (v1.0) Page 20 of 33

As we look at the code structure, it consists of image decomposition into the foreground and
background pixel lists, distance transform, and image assembly as shown in Figure 16 (“overall
computation time”). How quickly does the “distance compute time” of this CPU-only code run?
Figure 19 shows the compute time as a function of the number of foreground pixels for an image
of 512x512 pixels. As expected, time to compute will be the longest when one half of the pixels
belong to the background and another half belongs to the foreground. Perhaps a more desirable
plot would be to show time to compute as a function of total number of distance calculations,
which will effectively eliminate half of the plot shown in Figure 19. We will return to this idea
later as we port the code to FPGA and measure its performance.

0.1

1

10

100

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

19
66

08

22
93

76

24
57

60

25
39

52

25
80

48

26
00

96

26
11

20

26
16

32

26
18

88

26
20

16

number of foregouund pixels

tim
e

(s
)

Figure 19 – CPU Distance Compute Time

What about time spent to decompose the image into background/foreground pixel and to lists and
assemble the resulting image (the “overall computation time” minus the “distance compute time”
of Figure 16)? It turns out that these two procedures are very inexpensive since the number of
operations needed to perform these procedures is lineal in the image size space and it does not
require any expensive calculations – it is basically moving data in the CPU memory. For
example, for the 131072 foreground pixels case the execution time (wall clock time) of the entire
code is 78.367 seconds whereas the execution time of the nested loop part of the code is 78.352
seconds. Therefore, in this particular application we can safely ignore the CPU memory data
movement overhead due to these operations. We encourage the programmer to keep in mind that
this may not be the case in other applications.

5.3 Easy FPGA implementation
This is not meant to be a tutorial of how to use the SRC development tools and libraries; rather, it
is an illustration of application programming. We assume that the programmer has some
familiarity with the SRC MAPstation and Carte™ Programming Environment documentation.

1/10/2006 HPRC Application Programming in C (v1.0) Page 21 of 33

The first question that we need to answer is how to partition the application code between CPU
and FPGA. Since we already have done timing analysis of the CPU-only code and know that the
image decomposition and image assembly operations are fast and the distance calculations
nested loop is slow, then perhaps we should port the nested loop code segment to the FPGA and
keep everything else on the CPU.

The second question that we need to answer is how to deal with data movement between the
FPGA memory and the CPU. We need to supply FPGA with the coordinates of the foreground
and background pixels and we expect the MAP® Series C processor to return a list of distances
(Figure 20) which we can then re-map into a result image. Note that the distance list should be
in the same order as the list of the background pixels, otherwise we will not be able to properly
reconstruct the output image.

FPGA Memory

bg_distance=f(fg_pixel, bg_pixel)

fg_pixel bg_pixel bg_distance

Figure 20 - Easy FPGA Implementation Memory Layout

Fortunately for us (or was that by design?), foreground and background pixel coordinates are
already placed into 2 one-dimensional arrays and each pixel coordinate value occupies exactly 4
bytes (short int). This yields 2 sets of pixel coordinates per 64 bit word, which is the base data
type in the MAP® Series C processor. Therefore, on the CPU side of the code we can simply
cast the fg_pixel and bg_pixel pointers to int64_t*. Also, for performance reasons, we need to
use different memory allocation functions:

 short* fg_pixel = (short*)Cache_Aligned_Allocate(MAXP*sizeof(short));
 short* bg_pixel = (short*)Cache_Aligned_Allocate(MAXP*sizeof(short));

The same is true for the resulting distances: they are stored as a one-dimensional array of single
precision floating point numbers, 2 pixel coordinate values per 64 bit word:

 float* bg_distance = (float*)Cache_Aligned_Allocate((bgc/2)*sizeof(float));

Now we are ready to replace the nested loop code in the CPU code with a MAP® function call:

 int64_t tm1, tm2, tm3; // will be used to store timing measurements on the FPGA
 int mapnum = 0;

 gettimeofday(&t0, NULL);

 dtransform_hw((int64_t *)fg_pixel, (int64_t *)bg_pixel, (int64_t *)bg_distance,
 fgc/2, bgc/2, &tm1, &tm2, &tm3, mapnum);

 gettimeofday(&t1, NULL);

1/10/2006 HPRC Application Programming in C (v1.0) Page 22 of 33

Our job on the CPU side is done. (Note that map_allocate() needs to be called before
dtransform_hw() and map_free() should be called after, but you already knew this from reading
the SRC documentation, right?)

At this point we can get some estimates about the FPGA code performance, even without
implementing the code! We know that we have 2)(bgcfgc + pixel coordinate pairs to transfer
into MAP® Series C memory and 2bgc distances to transfer back to CPU memory, that’s

()() ((szfbgcszibgcfgcS))⋅+⋅⋅+= 222)(bytes in total, where szi is sizeof(short int) and szf is
sizeof(float). If we choose to use the striped DMA supported by the SNAP™ interface (section
4.1.1), in one clock cycle we can transfer two 64 bit words (16 bytes) between CPU memory and
MAP memory. Therefore, the DMA data transfer will require 16S clock cycles, or 91016 −⋅S
seconds with a 100 MHz FPGA clock. This is the total “DMA Data In” plus “DMA Data Out”
time in Figure 17.

Where do we put all the pixel coordinates in MAP memory? This depends on the processing
algorithm to be implemented on the MAP and on the overall image size. For simplicity, let us
first directly port the code as is, that is, implement just one calculation per loop. In this case, we
can put the foreground pixels to OBM bank A, background pixels to OBM bank B, and resulting
distances to OBM band C (Figure 20). This way the FPGA will be able to access both the source
and destination FPGA memory in one clock cycle. There is enough FPGA memory to store
input coordinates of 1048576 pixels in each bank and store 1048576 computed distances in bank
C. This translates into an image size of, say, 1024x1024 pixels that we can process by just using
3 OBM memory banks. If a larger image needs to be processed, the remaining OBM banks can
be used.

Here is our MAP® function call that implements our nested loop code segment derived from the
CPU-only code:

 void dtransform_hw(int64_t fg_pixel[], int64_t bg_pixel[], int64_t bg_distance[],
 int32_t fg_count, int32_t bg_count,
 int64_t *tm1, int64_t *tm2, int64_t *tm3, int mapnum)
 {
 // declare FPGA memory
 OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE) // foreground pixel coordinate list
 OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE) // background pixel coordinate list
 OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE) // distance result list

 int i; // background pixel list iterator
 int j; // foreground pixel list iterator
 int32_t mindA, mindB; // minimum estimated distance for this j iteration
 int32_t min_da, min_db; // running minimum distance for this i iteration
 int64_t t0, t1, t2, t3; // timers for “distance compute and FPGA overhead” in Figure 17

Figure 17

 read_timer(&t0); // “DMA data in” () section starts here

 // transfer foreground pixels from CPU memory to FPGA memory
 DMA_CPU(CM2OBM, AL, MAP_OBM_stripe(1,"A"), fg_pixel, 1, fg_count*4, 0);

1/10/2006 HPRC Application Programming in C (v1.0) Page 23 of 33

 wait_DMA(0);

 // transfer background pixels from CPU memory to FPGA memory
 DMA_CPU(CM2OBM, BL, MAP_OBM_stripe(1,"B"), bg_pixel, 1, bg_count*4, 0);
 wait_DMA(0);

 read_timer(&t1); // “distance compute time” () section starts here Figure 17

Figure 17

 for (i = 0; i < bg_count/2; i++) // for each pixel in the background list
 {
 for (j = 0; j < fg_count/2; j++) // find the nearest foreground list pixel
 {
 // calculate the distance estimate for all forground pixels
 // against the two j-th background pixels and keep a
 // running minimum distance for both background pixels
 distance(BL[i], AL[j], &mindA, &mindB);
 cg_accum_imin_32(mindA, 1, 100000, j == 0, &min_da);
 cg_accum_imin_32(mindB, 1, 100000, j == 0, &min_db);
 }

 // we have the minimum estimated distance for two background
 // pixels, take the final square root of these and store to OBM C
 comb_32to64_flt_flt(sqrt(min_da), sqrt(min_db), &CL[i]);
 }

 read_timer(&t2); // “DMA data out” () section starts here

 // transfer out result array
 DMA_CPU(OBM2CM, CL, MAP_OBM_stripe(1,"C"), bg_distance, 1, bg_count*4, 0);
 wait_DMA(0);

 read_timer(&t3); // end timer for “DMA data out”

 *tm1 = t1 - t0; // store “DMA data in” time
 *tm2 = t2 - t1; // store “distance compute time”
 *tm3 = t3 - t2; // store “DMA data out” time
 }

 void distance(int64_t pBG, int64_t pFG, int32_t *min_d1, int32_t *min_d2)
 {
 int16_t pbg1y, pbg1x, pbg2y, pbg2x; // two bg pixels (four coordinates total) from OBM B
 int16_t pfg1y, pfg1x, pfg2y, pfg2x; // two fg pixels (four coordinates total) from OBM A
 int16_t p1xx, p1yy, p2xx, p2yy; // estimated distance calculation results
 int32_t d1, d2; // minimum estimated distance calculation results

 // split the input data into two bg and two fg pixel coordinate sets
 split_64to16(pBG, &pbg1y, &pbg1x, &pbg2y, &pbg2x);
 split_64to16(pFG, &pfg1y, &pfg1x, &pfg2y, &pfg2x);

 // Calculate the distance estimate (equation 1 without the square root)
 // for the first background pixel and the two foreground pixels, then
 // store the lesser result in min_d1.

 p1xx = pbg1x - pfg1x;
 p1yy = pbg1y - pfg1y;

1/10/2006 HPRC Application Programming in C (v1.0) Page 24 of 33

 d1 = p1xx * p1xx + p1yy * p1yy;

 p2xx = pbg1x - pfg2x;
 p2yy = pbg1y - pfg2y;
 d2 = p2xx * p2xx + p2yy * p2yy;

 *min_d1 = (d1 < d2) ? d1 : d2;

 // Calculate the distance estimate (equation 1 without the square root)
 // for the second background pixel and the two foreground pixels, then
 // store the lesser result in min_d2.

 p1xx = pbg2x - pfg1x;
 p1yy = pbg2y - pfg1y;
 d1 = p1xx * p1xx + p1yy * p1yy;

 p2xx = pbg2x - pfg2x;
 p2yy = pbg2y - pfg2y;
 d2 = p2xx * p2xx + p2yy * p2yy;

 *min_d2 = (d1 < d2) ? d1 : d2;
 }

Since the input pixel coordinates are packed into 64 bit words, each time the FPGA reads one
data word from a single OBM bank, it reads coordinates for two consecutive pixels. Therefore,
in one clock cycle, the FPGA accesses two OBM banks: two pixels from the foreground list and
two pixels from the background list, which allows it to compute 4 distances in parallel.

Square root calculations are pipelined by the SRC compiler libraries for best performance, but
still, square root calculation engines are expensive in terms of FPGA resources. Note that the in-
lined distance() function calculates four distance estimates (the distance calculation without the
square root) and returns only the two minimum distance estimates for that pass. The
cg_accum_imin_32() functions keep a running minimum distance estimate for the two
background pixels in the i-th loop and the final square root calculation is performed after the
distance to the nearest foreground pixels has been found for these two background pixels. This
allows for the instantiation of only two hardware square root engines in the FPGA rather than
four, a substantial savings in FPGA resources.

We take timestamps between various code segments so that we can get precise measurements of
the time spent executing one or another section of the FPGA code. Also note that this code will
produce correct results only when the foreground pixels list has an even number of pixels in it
since we do not perform any boundary checks. This limitation can be fixed either on the CPU or
FPGA side by either adding extra check, or by setting and extra pixel by duplicating one of the
existing foreground pixels in case of odd foreground pixels list size.

The SRC MAP® compiler shows that the inner loop was successfully pipelined and its pipeline
depth is 16:

################## INNER LOOP SUMMARY ####################
loop on line 33:

1/10/2006 HPRC Application Programming in C (v1.0) Page 25 of 33

 clocks per iteration: 1
 pipeline depth: 16

The Xilinx place & route tools show that the design fit into the MAP® Series C FPGA just fine
and meets timing specifications:

############### PLACE AND ROUTE SUMMARY ####################
 Number of Slice Flip Flops: 14,367 out of 67,584 21%
 Number of 4 input LUTs: 10,070 out of 67,584 14%
 Number of occupied Slices: 10,055 out of 33,792 29%
 Number of MULT18X18s: 24 out of 144 16%
 freq = 100.4 MHz

Let’s run it and compare its performance to the CPU code performance. Figure 21 shows both
the time spent by the CPU and time spent on FPGA for the equal number of computed distances.
The best overall speedup of ~1.8 times is achieved when there is at least 1056964608 distances
are to be computed (which corresponds to having 4096 foreground pixels).

0

10

20

30

40

50

60

70

80

90

3.4
E+0

7

6.7
E+0

7

1.3
E+0

8

2.7
E+0

8

5.3
E+0

8

1.1
E+0

9

2.1
E+0

9

4.0
E+0

9

7.5
E+0

9

1.3
E+1

0

1.7
E+1

0

number of computed distances

tim
e

(s
)

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

sp
ee

du
p

fa
ct

or

CPU
MAP
speedup

Figure 21 - CPU vs. FPGA Performance (1)

5.4 Improved FPGA Implementation
These results are not particularly exciting: 1.8x performance improvement for all of that work?
What went wrong? Nothing, really. This illustrates our point on iterative development we first
mentioned in section 3.4. We suggest that a programmer needs to start out with a simple
reconfigurable system implementation, examine the results, and work in a step-wise manner
towards an acceptable implementation. This is our first simple implementation of the image
distance transform algorithm.

1/10/2006 HPRC Application Programming in C (v1.0) Page 26 of 33

We encourage programmers to not be faint of heart: our first successful NAMD implementation
on a reconfigurable system had a 200x slowdown. This first implementation produced correct
numerical results, but the performance results were not hopeful. It took us ten iterations to get to
a 3x speedup, and we are still working on this application. The point is that it is important to get
that first implementation running correctly at any performance, so that step-wise experimentation
can guide the programmer as they carefully fit their application onto reconfigurable system
architecture.

So let’s take our own advice and look at the results of our first implementation of the image
distance transform. Let’s examine the timing details for the code executed on MAP® Series C
with 32768 foreground pixels:

CPU time (overall) : 18.986597 seconds
CPU time (compute only) : 18.975332 seconds

FPGA time : 18.909964 seconds (1890996366 clock cycles)
 - data transfer : 0.002500 seconds (249981 clock cycles)
 - in : 0.001331 seconds (133060 clock cycles)
 - out : 0.001169 seconds (116921 clock cycles)
 - COMPUTE : 18.907464 seconds (1890746385 clock cycles)

A negligible amount of time was spent transferring data in and out, as expected, but quite a bit of
time was spent doing actual calculations, 18.91 seconds in total. Why is that? Consider the
following: for an image of size 512x512 pixels containing 32768 foreground pixels, there are
(512*512-32768)* 32768=7516192768 distances to compute. We perform 4 distance
calculations per clock cycle, that’s 7516192768/4=1879048192 clock cycles, or 18.79 seconds.
The remaining 1890996366-1890746385=249981 clock cycles were spent in outer loop
execution, which was not pipelined. Therefore, if we want to achieve a better overall code
performance, we need to shrink the FPGA compute time. Since FPGA frequency is fixed, this
can only be achieved by performing more calculations at once. But in order to perform more
calculations we need to have simultaneous access to more data. What are our options? What do
we need to consider?

Unused OBM Memory. There are three OBM memory banks on the MAP® Series C that we
have not used. If we put the background pixels in OBM A, use OBM B, C, D, and E for
foreground pixels, and OBM F for results, then the FPGA has access to 8 foreground pixels in
one clock cycle - we could speedup the calculations by a factor of 4.

Loop Unrolling. We are wasting 11948174 clock cycles for the i outer loop iterations. We need
to combine the i and j loop iterations.

Internal FPGA Memory (BRAM). We could utilize the internal FPGA memory, although its
small size will limit the maximum size of images that we could process.

1/10/2006 HPRC Application Programming in C (v1.0) Page 27 of 33

FPGA Multipliers. The current design utilizes 16% of the available dedicated hardware
multipliers on the FPGA, roughly 4% per calculation. This indicates that we may be able to
implement 20 or so distance calculations on a single FPGA in the MAP® Series C.

Second MAP® Series C FPGA. We will get more multipliers by splitting our design across the
two user FPGAs in the MAP® Series C. This, however, will prohibit us from using 4 OBM
banks for storing the foreground pixels for the first FPGA – the second FPGA will require
exclusive use of two OBM banks.

What is the right answer? As always, the answer is “it depends”. We encourage
experimentation on the part of the programmer. When we get to this point, we depend heavily
on trying several ideas and examining the performance results to guide us to a good solution.

After a bit of experimentation, we came up with the following dual FPGA implementation. Half
of the background pixels are stored in OBM A, the other half are stored in OBM B. Resulting
computed distances are stored in OBM C and D. The primary FPGA uses banks A and C, the
second FPGA uses banks B and D, and each chip is responsible for computing half of the results.
Foreground pixels are divided into 5 equal groups. Four of these groups are stored in BRAM
memory and the fifth in OBM. This fifth group of foreground pixels is duplicated in OBM E and
F – OBM E for the primary FPGA and OBM F for the secondary.

Remember that each 64 bit input word contains a pair of pixels (4 coordinates) of data. Thus, for
each pair of the background pixels we have simultaneous access to 10 pairs of the foreground
pixels on each FPGA chip (4 in BRAM, 1 in OBM times 2 pixels per word = 10 pairs of
foreground pixels.) This allows us to perform 20 simultaneous distance calculations on a single
FPGA (5 parallel distance calculation engines, 4 parallel calculations per engine), or 40
simultaneous distance calculations on the two FPGAs in the MAP® Series C module.

That’s the good news. The bad news is that we have a limit on the maximum number of
foreground pixels in an image we intend to process. Our implementation uses 4 banks of internal
FPGA (BRAM) memory and 1 OBM bank to hold all of the foreground pixels. We can’t split
the foreground pixels between the FPGAs, either, remember that all foreground pixels have to be
run against any one background pixel. Each of the four BRAM banks may be 64 bits wide,
which is fine, but the BRAM array index maximum value must be a multiple of 2 and not exceed
the total available BRAM on the FPGA. This allows us to declare four 64 bit arrays of 8192
elements each. This yields 8192 elements per array multiplied by 8 bytes per element multiplied
by 4 arrays = 262144 bytes, which does not exceed the maximum 324000 bytes of BRAM
available on the Virtex 2v6000 FPGA.

We can store 2 pixels in each 64 bit word, so we can store 8192 elements per BRAM array
multiplied by 2 pixels per element = 16384 pixels per array. We have 4 BRAM arrays and 1
OBM array for foreground pixels, so we are limited to images with 81920 foreground pixels or
less.

1/10/2006 HPRC Application Programming in C (v1.0) Page 28 of 33

The source code for the primary chip follows; the computational section of the code for the
secondary chip is similar. Note that we use the same inlined distance() function introduced in
section 5.3 and that the CPU side code for this implementation does not change.

 void dtransform_hw(int64_t fg_pixel[], int64_t bg_pixel[], int64_t bg_distance[],
 int32_t fg_count, int32_t bg_count,
 int64_t *tm1, int64_t *tm2, int64_t *tm3, int mapnum)
 {
 // declare FPGA on-board memory
 OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_D (DL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_E (EL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_F (FL, int64_t, MAX_OBM_SIZE)

 // declare internal FPGA memory (BRAMs)
 int64_t fg_pix01[8192];
 int64_t fg_pix02[8192];
 int64_t fg_pix03[8192];
 int64_t fg_pix04[8192];

 int64_t v0; // primary and secondary FPGA common parameters
 int 64_t count; // iterator used for splitting up the foreground pixels
 int 64_t indx; // index used to determine split of foreground pixels
 int 64_t k; // main computational loop counter
 int 64_t nofiterations; // main computational loop maximum count
 int64_t t0, t1, t2, t3; // sectional performance timers
 int32_t i, j; // image row and column indices

 // pairs (a,b) of minimum distances calculated by distance() function number 1-5
 int32_t mind01a, mind02a, mind03a, mind04a, mind05a;
 int32_t mind01b, mind02b, mind03b, mind04b, mind05b;

 // pair (a,b) of running minimum estimated distances
 int32_t mindAa, mindAb;

 // pair (a,b) of minimum estimated distances
 int32_t min_da, min_db;

 read_timer(&t0); // “DMA data in” () section starts here Figure 17

 // sync primary and secondary FPGA, no OBM permissions granted at this time
 send_perms(0);

 // send common parameters to secondary FPGA
 comb_32to64(fg_count, bg_count, &v0);
 send_to_bridge(v0);

 // copy the foreground pixel data from CPU memory to FPGA on board memory
 DMA_CPU(CM2OBM, AL, MAP_OBM_stripe(1,"A,B,C,D,E"), fg_pixel, 1, fg_count*4, 0);
 wait_DMA(0);

 // split the foreground pixels into five pieces: four to BRAM
 // and one to OBM E.

1/10/2006 HPRC Application Programming in C (v1.0) Page 29 of 33

 count = ((fg_count % 10) ? fg_count+10 : fg_count)/10;
 for (k = 0; k < count; k++)
 {
 indx = k * 10;
 fg_pix01[k] = AL[k];
 fg_pix02[k] = (indx+2 >= fg_count) ? AL[k] : BL[k];
 fg_pix03[k] = (indx+4 >= fg_count) ? AL[k] : CL[k];
 fg_pix04[k] = (indx+6 >= fg_count) ? AL[k] : DL[k];
 if (indx+8 >= fg_count)
 EL[k] = AL[k];
 }

 // let the secondary FPGA get set up with the foreground pixel data
 send_perms(OBM_A | OBM_B | OBM_C | OBM_D | OBM_E | OBM_F);

 // wait for the secondary FPGA to return
 send_perms(0);

 // copy the background pixel data from CPU memory to FPGA on board
 // memory – half to OBM A and half to OBM B
 DMA_CPU(CM2OBM, AL, MAP_OBM_stripe(1,"A,B"), bg_pixel, 1, bg_count*4, 0);
 wait_DMA(0);

 // give the secondary FPGA control of its OBM data
 send_perms(OBM_B | OBM_D | OBM_F);

 read_timer(&t1); // “distance compute time” () section starts here Figure 17

 // main unrolled computational loop – for all background pixels
 nofiterations = count*(((bg_count % 4) ? bg_count+3 : bg_count)/4);
 for (k = 0; k < nofiterations; k++)
 {
 // i and j (image pixel row and column) index counters
 cg_count_ceil_32 (1, 0, k == 0, count-1, &j);
 cg_count_ceil_32 (j==0, 0, k == 0, 0xffffffff, &i);

 // parallel distance function calls 1-5
 distance(AL[i], fg_pix01[j], &mind01a, &mind01b);
 distance(AL[i], fg_pix02[j], &mind02a, &mind02b);
 distance(AL[i], fg_pix03[j], &mind03a, &mind03b);
 distance(AL[i], fg_pix04[j], &mind04a, &mind04b);
 distance(AL[i], EL[j], &mind05a, &mind05b);

 // find the minimum for each set (a,b) of the five distance calculations
 // (combine the results of the parallel calculations)
 mindAa = min5(mind01a, mind02a, mind03a, mind04a, mind05a);
 mindAb = min5(mind01b, mind02b, mind03b, mind04b, mind05b);

 // keep running minimum distances for each pair (a,b)
 cg_accum_imin_32(mindAa, 1, 100000, j == 0, &min_da);
 cg_accum_imin_32(mindAb, 1, 100000, j == 0, &min_db);

 // take the square root of this iteration’s pair (a,b) estimated distances,
 // combine, and store
 comb_32to64_flt_flt(sqrt(min_da), sqrt(min_db), &CL[i]);
 }

1/10/2006 HPRC Application Programming in C (v1.0) Page 30 of 33

 // sync primary and secondary FPGA and get all OBM permissions back
 send_perms(0);

 read_timer(&t2); // “DMA data out” (Figure 17) section starts here

 // transfer out result arrays
 DMA_CPU(OBM2CM, CL, MAP_OBM_stripe(1,"C,D"), bg_distance, 1, bg_count*4, 0);
 wait_DMA(0);

 read_timer(&t3); // end timer for “DMA data out”

 *tm1 = t1 - t0; // store “DMA data in” time
 *tm2 = t2 - t1; // store “distance compute time”
 *tm3 = t3 - t2; // store “DMA data out” time
 }

 int32_t min5(int32_t a, int32_t b, int32_t c, int32_t d, int32_t e)
 {
 int32_t ab, cd, cde;

 ab = (a < b) ? a : b;
 cd = (c < d) ? c : d;
 cde = (cd < e) ? cd : e;

 return (ab < cde) ? ab : cde;
 }

We added another inlined function, min5(), a function to find the minimum of five integers. We

ote that the FPGA code has to do more work now – it needs to bring in all of the foreground

he MAP® compiler shows that the unrolled loop was successfully pipelined and its pipeline

################## INNER LOOP SUMMARY ####################

ration: 1

op on line 86:
ration: 1

#######################################

he Xilinx place and route tools show that the design fits in and meets timing specifications:

############### PLACE AND ROUTE SUMMARY ####################

needed this because we have five parallel distance calculations that return one-fifth of the
distance calculations. min5() is used to combine these results.

N
pixels first and divide them up among the 5 arrays before bringing in the background pixels.
There is also some code that controls which of the two FPGAs has access to which OBM banks.

T
depth is 90:

loop on line 57:
 clocks per ite
 pipeline depth: 10

lo
 clocks per ite
 pipeline depth: 90
################################

T

1/10/2006 HPRC Application Programming in C (v1.0) Page 31 of 33

 Number of Slice Flip Flops: 26,479 out of 67,584 39%
 Number of 4 input LUTs: 17,819 out of 67,584 26%
 Number of occupied Slices: 17,558 out of 33,792 51%
 Number of Block RAMs: 128 out of 144 88%
 Number of MULT18X18s: 140 out of 144 97%
 freq = 100.1 MHz

et’s have a look at the code performance executed with 32768 foreground pixels:

s)

his time we spent 187916437 clock cycles to perform actual calculations, which is about 1/10

L

CPU time (overall) : 2.029390 seconds
CPU time (compute only) : 2.017544 seconds
--
FPGA time : 1.880733 seconds (188073328 clock cycles)
 - data transfer : 0.001569 seconds (156891 clock cycles)
 - in : 0.000855 seconds (85492 clock cycles)
 - out : 0.000714 seconds (71399 clock cycles)
 - COMPUTE : 1.879164 seconds (187916437 clock cycle

T
of what our original code produced. The overall compute time is now 2.02 seconds compared to
18.98 seconds in the first FPGA implementation. This gives us 17x speedup compared to only
about 1.8x produced by our first implementation. Figure 22 shows the complete performance
results for this implementation.

17x17x17x
15x

13x

9x

6x

4x
2x1x

0

10

20

30

40

50

60

70

3.4
E+0

7

6.7
E+0

7

1.3
E+0

8

2.7
E+0

8

5.3
E+0

8

1.1
E+0

9

2.1
E+0

9

4.0
E+0

9

7.5
E+0

9

1.3
E+1

0

number of computed distances

tim
e

(s
)

0x
2x
4x
6x
8x
10x
12x
14x
16x
18x
20x

sp
ee

du
p

fa
ct

or

CPU
MAP
speedup

Figure 22 - CPU vs. FPGA Performance (2)

 our 17x performance improvement for the image distance transform algorithm the best Is

possible speedup? The answer is “no”. In the near term, perhaps there is some clever algorithm

1/10/2006 HPRC Application Programming in C (v1.0) Page 32 of 33

1/10/2006 HPRC Application Programming in C (v1.0) Page 33 of 33

operation portioning or data organization that could yield even better performance. In the longer
term, the growth in FPGA resources and clock rates guarantees better application performance.

6 Summary
In this white paper, we introduced how to get started with application programming in C on
reconfigurable systems, discussed metrics that qualitatively indicate the potential value of
porting a given application to a reconfigurable system, and then walked through three example
iterations of algorithm development on an SRC MAPstation. We discussed reconfigurable
system architectures and various approaches for a programmer to gain application acceleration,
and in doing so, cautioned the programmer that reconfigurable systems for scientific applications
are a relatively new development in computer architecture. And like all new developments in
computer architecture, reconfigurable systems require that an application programmer learn a
new set of best practices and rules of thumb (“application programming”).

The FPGA portion of today’s reconfigurable systems does not have the nearly infinite resources
that programmers currently enjoy on CPU-only systems. Working with relatively limited
resources requires some work and cleverness on the part of the programmer, but even so, we
have developed performance improvements of 3x to 40x on reconfigurable systems for several
scientific applications with real world data sets. Remember the limited resources of the
computers of even five years ago? Contrast that with the resources of today’s CPU-only systems
and keep in mind that the technology growth curve for FPGAs exceeds that predicted by
Moore’s Law for CPUs. We are starting at 3x to 40x performance improvements today. We do
not dare to predict typical performance improvements realizable from reconfigurable systems
over the next five years for fear of being thought short-sighted by scientific application
programmers in 2010.

7 Acknowledgements
This work was performed at the National Center for Supercomputing Applications and funded by
the National Science Foundation (NSF) grant SCI 05-25308.

We would also like to thank the following people for their guidance, support and encouragement:

Jon Huppenthal, CEO, SRC Computers, Inc.
Rob Pennington, CTO, National Center for Supercomputing Applications, UIUC
Dan Poznanovic, VP Software Development, SRC Computers, Inc.
Dave Raila, Sr. Research Programmer, Department of Computer Science, UIUC
Craig Steffen, Sr. Research Scientist, National Center for Supercomputing Applications, UIUC

	Introduction
	Why Reconfigurable Computing?
	Concurrency
	CPU vs. FPGA Clock Speeds
	How to get started with Reconfigurable Computing?

	Reconfigurable System Architecture
	What is an FPGA?
	FPGA and Memory
	FPGA and Memory Overhead
	FPGA Memory Considerations

	Application Metrics
	Operations per data
	Results per data and data reuse
	Data per latency
	Will the algorithm fit?
	Table driven calculations
	CPU cache breakers

	Example Application Target System: SRC MAPstation
	System Architecture
	SRC MAPstation
	�
	MAP® Series C Processor Module

	SRC Carte™ Programming Environment

	Image Distance Transform Implementations
	Algorithm Performance Considerations
	CPU implementation
	Easy FPGA implementation
	Improved FPGA Implementation

	Summary
	Acknowledgements

