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1 Introduction 
At NCSA, scientists aggressively seek floating point application performance improvements far 
beyond those implied by Moore’s Law.  The Innovative Systems Lab at NCSA was created to 
explore emerging computer technologies that have the potential to serve the application 
scientists’ mid- to long-term performance requirements.  These technologies include cell 
processing, specialized ASIC application coprocessors, multicore processors, graphics 
accelerators used for general purpose applications, and reconfigurable computing (RC), that is, 
computers that utilize devices such as Field Programmable Gate Arrays (FPGA) as processor 
elements.  In this white paper, we focus on reconfigurable computing application programming. 
 
SRC Computers, Inc. is an early pioneer in the field of reconfigurable computing.  SRC’s work 
is based on the belief that in the near future, primarily because of processing costs and requisite 
volumes, only high end microprocessors and reconfigurable devices will be built with leading 
edge process geometries.  The classic von Neumann load/store architecture is very good for 
some tasks, but seems to have serious scalability issues.  On the other hand, reconfigurable 
devices have proven to be very scalable for a large class of applications, as well as having 
technology performance increase curves that far exceed Moore’s law1.  It is this realization that 
led SRC to develop its IMPLICIT+EXPLICT Architecture2.  SRC has been developing 
systems based on this architecture since 1997.  This architecture combines both traditional 

                                                 
‡ Corresponding author 
1 K. Underwood, FPGAs vs. CPUs: Trends in Peak Floating Point Performance, Proceedings of the 2004 
ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, Monterey (CA), February 22-24, 
2004, pp 171-180. 
2 IMPLICIT+EXPLICIT Architecture White Paper available by request at 
http://www.srccomp.com/WhitePapers.htm 
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microprocessors and reconfigurable processors, called MAP, as peers on a shared memory, and 
has yielded orders of magnitude performance increases for many applications.  
 
Since shipping their first system in 1998, SRC has continued to enhance the overall system 
hardware implementation, as well as developing a complete high level language programming 
environment called Carte.  Carte eliminates the need for the programmers to have an in-depth 
hardware design knowledge by allowing them to use standard ANSI C and FORTRAN, as well 
as standard programming constructs, to program both the standard microprocessors and the MAP 
processors.  Carte also includes a complete debugging environment to facilitate program 
development in way that is very familiar to programmers.  
 
For the past 15 years, FPGA designs were implemented by hardware engineers using a 
specialized hardware description language (HDL), like Verilog or VHDL.  This is appropriate 
for embedded applications, but with recent improvements in FPGA technology there is great 
potential for reconfigurable computing to provide scientific application performance beyond 
Moore’s Law.  Industry has responded by developing several C and C-like languages that target 
FPGAs instead of CPUs.  After all, application scientists should not be expected to become 
hardware engineers in order to utilize a new computer technology. 
 
At the same time, application programmers and scientists who target reconfigurable systems 
need to be aware that a C compiler on these machines is not “just another C compiler”.  New 
system architectures require that the programmer learn a new set of best practices and rules of 
thumb (“application programming”) that work well for the new architecture.  Put another way, 
the application programming style that works well for scalar CPU programming will not map 
well to a combined CPU/FPGA reconfigurable architecture.  At NCSA, we are working closely 
with application scientists and industry application specialists to develop effective programming 
styles and best practices on reconfigurable systems.  This paper introduces reconfigurable system 
architecture and describes our approach to reconfigurable system application programming. 

1.1 Why Reconfigurable Computing? 
Learning a new architecture and a new programming style is not a trivial task, and so a 
reasonable question might be why bother with reconfigurable computing in the first place?  The 
simple answer is that reconfigurable systems offer potential application performance 
improvements beyond those predicted by Moore’s Law.  The potential lies in the nature of the 
architecture: an application programmer may develop a dedicated, special purpose hardware 
compute engine that exploits the concurrency inherent in their application.  This is exactly what 
drives the Application Specific Integrated Circuit (ASIC) development of devices such as Grape1 
and Clearspeed2.  But while ASICs take months to develop, have a substantial tooling cost, and 
can not be changed, FPGA based designs take days to weeks to develop, have no tooling cost, 

                                                 
1 T. Kuberka, A. Kugel, R. Männer, H. Singpiel, R. Spurzem, and Ralf Klessen, AHA-GRAPE: Adaptive 
Hydrodynamic Architecture – GRAvity PipE, Proceedings of The 1999 International Conference on Parallel and 
Distributed Processing Techniques and Applications (PDPTA 99), Las Vegas (NV) USA June 28-July 1, 1999, pp 
1189-1195. 
 
2 Clearspeed Technology plc, CSX Architecture Whitepaper, PN-1105-0003, San Jose (CA) USA, 2005. 
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and can easily be changed.  Even better, ASIC design requires extensive hardware engineering 
expertise not required for reconfigurable system application development. 

1.2 Concurrency 
We state in section 1.1 that an FPGA may be used to exploit the concurrency inherent in an 
application’s algorithm.  What do we mean by concurrency?  There are two types of concurrency 
that may be inherent in an algorithm: deep parallelism and wide parallelism.  
 
Deep parallelism (Figure 1), also known as pipelining or instruction level parallelism, is used 
when a function’s set of operations is broken up into stages, where each stage executes in a 
single clock cycle and each stage’s input depends solely on the results of the previous stage.  The 
latency of the pipeline is the number of clock cycles needed to get the first result from this set of 
pipelined operations and is equal to the number of pipeline stages.  The good news is that as long 
as the pipeline has input data available every single clock cycle, a result is generated every single 
clock cycle after the latency penalty is paid.  If there is a lot of data relative to the pipeline 
latency, then the time to get the first result appears insignificant.  Put another way, the processing 
time of a well-designed pipeline is O(N+L), where N is the size of the data to be processed and L 
is the number of stages in the processing pipeline.  If N is large relative to L, then the processing 
time approaches O(N). 

N 
data

Stage 1 operations
Stage 2 operations
Stage 3 operations
Stage 4 operations

Stage L operations

result

Stage 5..L-1

 
Figure 1 - Deep Parallelism 

It is good to note that the SRC compiler technology automatically pipelines a set of operations 
inside a loop unless directed otherwise by the programmer. 
 
Wide parallelism (Figure 2), also known as data level parallelism, simply duplicates a single 
pipeline and splits the input data across the duplicated pipelines.  This is true parallelism, as the 
pipelines are actually implemented as separate entities in FPGA hardware and execute 
simultaneously.  This, of course, only works when the input data consists of independent 
elements.  The execution time of this type of parallelism is O((N+L)/P) where N is the size of the 
data to be processed, L is the number of stages in the processing pipeline and P is the number of 
independent pipelines.  The ideal number of independent pipelines varies from algorithm to 
algorithm, but in general, we run out of FPGA resources before we reach an ideal pipeline count. 
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Figure 2 - Wide Parallelism 

 
This level of algorithm parallelism needs to be explicitly implemented by the programmer and 
requires the use of SRC compiler directives. 

1.3 CPU vs. FPGA Clock Speeds 
There is an interesting question relating current FPGA clock speeds and CPU clock speeds.  At 
present, a typical CPU runs at 3 GHz, while a typical FPGA runs at 100 MHz (Figure 3).  This 
speed mismatch appears crippling to the FPGA, since the CPU can execute 30 one cycle serial 
operations in the same time that it takes the FPGA to execute just 1 one cycle serial operation.  
But consider this: a CISC CPU takes many one cycle clocks to execute a single instruction.  The 
CPU also needs to service interrupts, executes time slices for all of the system processes, and has 
memory latency and register spill effects.  On the other hand, the FPGA is a dedicated algorithm 
specific coprocessor that does nothing but generate results for an application.  To date at NCSA, 
we have found that for large real-world data sets with many pipelined single precision floating 
point operations, combined CPU/FPGA execution may achieve from 3x to 40x performance 
improvement over the CPU execution alone.  
 

3 GHz
CPU

100MHz
FPGA

30 one-
cycle serial 
operations

1 one-cycle 
serial 

operation  
Figure 3 - CPU vs. FPGA Clock Speeds 
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1.4 How to get started with Reconfigurable Computing? 
Simply stated, the first step is to find a core algorithm in an application and completely 
understand the required data movement into and out of the algorithm. 
 
A scientific application code typically has at least one computationally intensive algorithm 
embedded in it.  Presumably, this algorithm is where the application spends most of its execution 
time.  Perhaps the algorithm calculates forces between atoms or calculates the distance between 
background and foreground pixels or performs string matching.  Regardless, an algorithm may 
be abstracted from the application so that it appears in the algorithm form shown in Figure 4: a 
result or a set of results is obtained by a series of operations on the function input operands.  
 

Operations
Result = f(a,b,c,d,e) 

Operands
(a,b,c,d,e) Result

 
Figure 4 - Abstract Algorithm Model 

Once the programmer has a good understanding of the operand data movement into the 
algorithm, the algorithm operations on the operand data, and the movement of the resulting data, 
they may begin to map their algorithm to reconfigurable system architecture. 
 
For instance, consider the 2D image distance transform algorithm1 used in many image 
processing applications in which image regions need to be isolated for subsequent processing.  
The algorithm is simply stated: for each background pixel, calculate the distance to the nearest 
foreground pixel.  Thus, the resulting pixel value for each background pixel is the distance from 
that background pixel to the nearest foreground pixel.  
 
So, in its simplest form, the distance transform algorithm calculates the distance to all pixels in 
the foreground for a single given background pixel.  This simple form is repeated for each 
background pixel.  Described programmatically,  
 

int m,n 
long bg_x[BG_MAX], bg_y[BG_MAX] 
long fg_x[FG_MAX], fg_y[FG_MAX] 
float d, distance[BG_MAX] 

 
for m = 0 to BG_MAX-1  

   for n = 0 to FG_MAX-1 
    d = calculate_distance(bg_x[m], bg_y[m], fg_x[n], fg_y[n]) 
    if(d < distance[m]) 
     distance[m] = d 
 
The input operands to the algorithm are the two lists of pixels: background pixel coordinates and 
foreground pixel coordinates.  A result is obtained for a background pixel m after the distance to 
all foreground pixels from pixel m have been calculated.  The operations in the 
“calculate_distance” function are from the Euclidian distance equation 
 

                                                 
1 P. E. Danielsson, "Euclidean distance mapping," Comput. Graphics Image Processing, vol. 14, pp. 227-248, 1980. 
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22 )__()__( yfgybgxfgxbgd −+−=                                      (1) 
 

At this point, we understand the algorithm’s operand data input movement, the algorithm’s 
operations, and the resulting data output movement.  We will continue to use this algorithm as a 
reconfigurable system design example throughout this paper. 
 

2 Reconfigurable System Architecture 
A simple view of reconfigurable system architecture is shown in Figure 5.  One or more FPGAs 
and dedicated FPGA memories are connected to CPU main memory via some high-bandwidth 
interface.  Arrays of data from the CPU memory are transferred over this interface to the FPGA 
memory and streamed through the computation engine(s) inside the FPGA.  Results of this 
computation are transferred to FPGA memory and streamed back to CPU memory. 
 

Reconfigurable System

CPU

Memory FPGA and
Memory

 
Figure 5 - Simple Reconfigurable System Architecture 

2.1 What is an FPGA? 
A computer hardware designer has a very detailed and specific view of the inside of FPGAs.  
However, our focus is on FPGA application programming with high level languages, so we will 
omit a great deal of detail and focus only on the aspects of FPGAs important to a scientific 
application developer. 
 
An FPGA is an integrated circuit in some sense very similar to a CPU.  A CPU is an integrated 
circuit that contains many functional units used to interpret and execute program instructions.  
An FPGA, on the other hand, is essentially a collection of unconnected simple and complex 
functional units in hardware – the application programmer’s code defines the connections among 
the functional units.  Some of these hardware functional units are very complex and specific – 18 
bit integer multipliers, for example.  Most of the functional units are no more than simple 
hardware building blocks that may be interconnected to make more complex functional units.  
 
The idea of CPU instruction execution does not exist in FPGAs.  Rather, the functional blocks 
are defined and interconnected by the development process to provide the hardware units used to 
directly execute the calculations and operations specified by the programmer.  Unlike a CPU, all 
of the hardware functional units are specified by the programmer – the FPGA is completely 
dedicated to solving the programmer’s algorithm.  Even better, all of the hardware functional 
units in a programmed FPGA may execute in parallel. 
 
Before moving on, let’s quickly outline the development process for FPGAs in reconfigurable 
systems.  An algorithm’s operations and data movement are specified in C by the programmer.  
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This embodiment of the algorithm is compiled to some intermediate hardware description 
language and given to the FPGA vendor’s tools.  These tools perform the functional unit 
placement in the FPGA and determine the functional units interconnect (“place and route”).  
After place and route, which can take some time, the FPGA vendor tools produce an FPGA 
configuration file, or a “bit file”.  This bit file may be loaded onto the FPGA (“programming the 
FPGA”) to set the functional unit interconnect in the target device.  After programming the 
FPGA is complete, is available for use until the system is powered down or a different bit file is 
programmed into the FPGA. 
 
The programmer need only be concerned about the very first step – using C to specify an 
algorithm’s operations and data movement.  The intermediate steps are usually hidden from the 
programmer and handled by the development tools, although this may vary from vendor to 
vendor. 

2.2 FPGA and Memory 
FPGA local memory is typically organized into several banks attached to the FPGA.  In the SRC 
MAPstation MAP® Series C module, there are six banks of 64 bit wide memory around two 
FPGAs.  (Either FPGA may access any memory using the compiler’s FPGA synchronization 
primitives.)  For this discussion, we will use all six banks and one FPGA.  Five banks will 
contain operands and one bank will contain results.  The FPGA calculates each element of the 
result array from some function of each element of the five input arrays, as shown in Figure 6.  
The full operation of the algorithm starts with the transfer of arrays 0 through 4 from allocated 
areas of CPU memory to five banks of the FPGA memory.  Data from these five banks stream 
simultaneously into the FPGA and the function f in the FPGA is applied to each set of data from 
the five memory banks.  After some calculation latency, results from function f start filling the 
result memory bank and the contents of the result memory bank is transferred to allocated CPU 
memory. 

CPU Memory

FPGA Memory

FPGA                 Result[i]=f(Array0..4[i])

Array0 Array1 Array2 Array3 Array4 Result

Array0 Array1
Array2

Array3
Array4

Result

 
Figure 6 - FPGA and Memory Example 

The FPGA and FPGA memory are speed balanced, that is, the FPGA can read any number of 
attached memory banks simultaneously.  In our example in Figure 6, each memory bank is 8 
bytes (64 bits) wide and the FPGA in the MAP® Series C operates at 100 MHz (10 nS).  This 
means that with five memory banks used to supply input data to the FPGA, the input data 
bandwidth to the FPGA is 4 GB/s. 
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In our ongoing image distance transform example design started in section 1.4, the CPU memory 
will have several arrays allocated as shown in Figure 7. 
 

CPU Memory
bg_x[BG_MAX]

distance[BG_MAX]

bg_y[BG_MAX]

fg_x[FG_MAX]

fg_y[FG_MAX]

 
Figure 7 - Distance Transform CPU Memory 

Each result produced by the FPGA and stored in the distance array is some function (described in 
section 1.4) of the two background and two foreground arrays. Since the input arrays are made 
up of 32 bit sized elements, they may be packed two to a 64 bit container.  We will need three of 
the six FPGA memory banks as shown in Figure 8.  All the background pixels’ x and y 
coordinates are packed into FPGA memory bank A, all the foreground pixels’ x and y 
coordinates are packed into FPGA memory bank B, and half of FPGA memory bank C is 
reserved for the shortest distance results. 
 

FPGA Memory (Banks D, E, F unused)

distance[m]=f(bg_x[m], bg_y[m], fg_x[..], fg_y[..])
FPGA

bg_x[..] distance[..]
Bank CBank A Bank B

bg_y[..] fg_x[..] fg_y[..] unused

 
Figure 8 - Distance Transform FPGA Memory 

This is why understanding the data movement for an algorithm is important in reconfigurable 
system design: the programmer is responsible for programming the data movement to and from 
the FPGA memory.  Also, different systems have different bank counts and perhaps even 
different bit widths for that system’s FPGA memory.  A programmer has to be keenly aware of 
the FPGA memory architecture for their target reconfigurable system. 

2.3 FPGA and Memory Overhead 
In our distance transform example, we’ve already modified our algorithm because of FPGA 
memory considerations.  The original program description from section 1.4 has become 
 

long bg_x[BG_MAX], bg_y[BG_MAX] 
long fg_x[FG_MAX], fg_y[FG_MAX] 
float distance[BG_MAX] 
 
pack bg_x and bg_y array elements into BG_MAX elements of a 64 bit array 
transfer resulting packed array to FPGA memory bank A 
pack fg_x and fg_y array elements into FG_MAX elements of a  64 bit array 
transfer resulting packed array to FPGA memory bank B 

 start FPGA processing and wait for completion 
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 transfer and unpack lower 32 bits from FPGA memory bank C into distance array 
 
A reasonable question at this point is why we didn’t rework our algorithm into something like 
 

int m 
long bg_x[BG_MAX], bg_y[BG_MAX] 
long fg_x[FG_MAX], fg_y[FG_MAX] 
float d, distance[BG_MAX] 

 
pack fg_x and fg_y array elements into FG_MAX elements of a  64 bit array  
transfer resulting packed array to FPGA memory bank B 
for m = 0 to BG_MAX-1 
 transfer bg_x[m] and bg_y[m] to FPGA memory bank A 
 start FPGA processing and wait for completion 
 transfer and unpack lower 32 bits from FPGA memory bank C into distance[m] 

 
The reason that we want to combine the algorithm inner and outer loops into one FPGA function 
is because of the FPGA and memory overhead (Figure 9) inherent in reconfigurable systems.  
Every time the FPGA processing is invoked from the program executing on the CPU side, there 
is a system-dependent time cost that consists of the function call overhead and data movement 
overhead.  In our questionable algorithm where the inner loop “calculate_distance” function is 
replaced by, the first call to the FPGA is expensive in terms of time: milliseconds from the first 
function call overhead and the foreground array transfer time.  Any calls to the FPGA thereafter 
cost less time, certainly, but remember that this FPGA function will be called for each 
background pixel.  If the function call overhead is 1 microsecond and there are 1,000,000 
background pixels, we’ve wasted one full second of processing time in unnecessary function call 
overhead.  The goal of the application programmer is to get an application speedup and every 
possible time-saving trick counts.  This is why it is best to port both the algorithm inner and 
outer loops to FPGA, run the FPGA processing once in order to minimize the time wasted in 
function call overhead. 
 

Function call overhead O(mS) initial, O(uS) thereafter

Move data from CPU 
memory to FPGA memory

Compute

Move result from FPGA 
memory to CPU memory

O(word transfer time * word count)

O(word transfer time * word count)
 

Figure 9 - FPGA and Memory Overhead 

Also, in general, it is good practice to move all the data needed by the FPGA computations from 
CPU memory once and move all of the computational results back to CPU memory once.  The 
more time an algorithm spends computing relative to overhead time, the better the algorithm 
performance acceleration. 
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2.4 FPGA Memory Considerations 
Our image distance transform example fits well into the SRC MAP® Series C FPGA memory 
architecture, but what about applications with function operands that do not fit exactly into six 64 
bit wide memory banks?  Consider Figure 10, where we have an algorithm that produces two 64 
bit results from two different functions of seven 64 bit input arrays. All of arrays 0, 1, 2, and 6 
are stored before arrays 3, 4, and 5.  
 

FPGA Memory Interface 

FPGA
Result0[i]=f(Array0..6[i])
Result1[i]=f(Array0..6[i])

Result0Array0 Array1 Array2
Array3 Array4 Array5

Result1Array6

 
Figure 10 - Difficult FPGA Memory Data Placement 

With the CPU data to FPGA memory mapping shown here, all of the required function operands 
are not simultaneously available to the FPGA.  In fact, all data elements of four of the arrays, 0, 
1, 2, and 6, must be clocked into and stored in the FPGA before the remaining three arrays, 3, 4, 
and 5, become available to the FPGA.  This memory mapping will likely yield an application 
slowdown. 
 
Sometimes using the CPU to interleave the operand data array elements in CPU memory first 
and then transferring the interleaved data to the FPGA memory may yield an overall application 
performance improvement.  The data are interleaved so that the first element of each array is 
striped across the available FPGA memory banks; the second element of each array is added 
next, and so on.  This results in an FPGA memory layout shown in Figure 11, where all of the 
data is available for a single result every two clock cycles. 
 

FPGA Memory Interface 

FPGA
Result0[i]=f(Array0..6[i])
Result1[i]=f(Array0..6[i])

Result0Array0[0] Array1[0] Array2[0]
Array3[0] Array4[0] Array5[0]

Result1Array6[0]

Array0[1] Array1[1] Array2[1]
Array3[1] Array4[1] Array5[1]

Array6[1]

 
Figure 11 - Interleaved Operand Data Arrays 

Another consideration arises if the original CPU application code contains data structures instead 
of data arrays.  These data structures must be “flattened” before transfer to FPGA memory 
because the FPGA has no method to index into structure elements stored in FPGA memory.  
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3 Application Metrics 
With our work with scientific applications and real world data sets on reconfigurable systems, 
we observe a set of qualitative metrics that tend to indicate whether or not an application’s 
algorithm is a good candidate for porting to a reconfigurable architecture. 

3.1 Operations per data 
This metric is an indicator of the potential performance acceleration for an algorithm.  In general, 
the more calculations performed on a given set of data, the better.  The central idea here is that 
the time required to do the work on the data should exceed the time required to move the data to 
the FPGA memory.  Put another way, if a programmer has a design that spends most of its time 
moving data to and from the FPGA rather than computing, they will not realize a performance 
gain over CPU-only processing. 
 
For example, consider the algorithm function 
 

][][][ ibiairesult +=                                                              (2) 
 
This could be implemented in an FPGA, of course, but consider the amount of data movement 
relative to the operations.  There are two input data arrays, one output data array, and one 
operation.  The bulk of the total FPGA processing time will be spent moving the input arrays to 
FPGA memory and moving the output array back to CPU memory.  There will likely be no 
performance gain relative to CPU-only execution of this function.  
 
A much better candidate algorithm for FPGA performance acceleration has many operations per 
unit data.  Even better is a set of calculations which has intermediate results that undergo further 
calculations before the final result.  For example, consider 
 

])[arccos(][_
10*][][_

])[][(])[][(][ 22

itempibresult
itempiaresult

jbyjayibxiaxitemp

=
=

−+−=

                                    (3) 

 
This is an excellent candidate for FPGA based performance acceleration.  We have four input 
data arrays, two output data arrays, one intermediate result, and eight operations.  The SRC 
compiler will take care of pipelining the calculations, of course, but this also illustrates the 
advantage of hardware design: temp[i], result_a[i], and result_b[i] will result in three separate, 
independent sections of hardware whose execution is fully overlapped.  That is, calculations for 
result_a[i], result_b[i], and temp[i+1] will start as soon as temp[i] is produced.  This sort of 
parallelism is literally impossible using scalar CPU-only execution: calculations for the result_a 
and result_b arrays may not start until all of the temp calculations are performed and the 
intermediate results pooled. 
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The high operation per unit data metric for our distance transform algorithm (equation 1) of four 
input arrays, one output array, and six operations imply that we will achieve some performance 
improvement with this algorithm using an FPGA. 

3.2 Results per data and data reuse 
Given that many operations for an amount of data is a good thing for FPGA performance 
acceleration, multiple results for a set of input data will also likely yield performance 
improvement.  For instance, if result array X is a function of the input arrays A, B and C; and 
result array Y is a function of the input arrays A, B, and D, then the performance gains, if any, 
will result from the simultaneous hardware generation of the two sets of results from the four 
input arrays. 
 
Another aspect of data reuse is reusing some portion of the input data sets many times for result 
calculations. Our image distance transform is an example of this aspect of data reuse. Remember 
that our distance transform algorithm is: for each background pixel, calculate the distance to all 
foreground pixels and return the least distance. For all result calculations, the background pixel 
coordinate list is used once and the foreground pixel coordinate list is reused for each 
background pixel. The data movement from CPU memory to FPGA memory overhead cost is 
only the time it takes to move the foreground and background coordinates lists once. 

3.3 Data per latency 
In section 1.2, we introduced the idea of pipelining as a method of exploiting concurrency in an 
algorithm using reconfigurable computing.  It is worth repeating here that the time required to 
process data in a pipeline is O(N+L), where N is the number of data units to be processed and L 
is the number of stages in the processing pipeline.  If N is large relative to L, then the processing 
time approaches O(N).  This means that processing 1,000,000 units of data through a 160 stage 
pipeline is much better in terms of overall performance than processing 100 units of data through 
the same pipeline.  
 
Remember that our distance transform algorithm is: for each background pixel, calculate the 
distance to all foreground pixels and return the least distance. As will be shown in section 5, the 
hardware pipeline for equation 1 has 90 stages.  If we assume a small image size of 512x512 
pixels with 131072 foreground pixels and 131072 background pixels, then there will be roughly 
1.7x1010 pixel coordinate data points used in the calculations.  From a qualitative data per 
latency point of view, this distance transform algorithm is a good candidate for FPGA 
performance acceleration. 

3.4 Will the algorithm fit? 
This concept comes from the idea of gaining algorithm performance improvements from both 
deep and wide parallelism (section 1.2).  Implementing deep processing pipelines, or 
implementing multiple processing pipelines will consume FPGA resources very quickly.  The 
only useful method we’ve found that addresses this question is to implement a single algorithm 
processing pipeline for a target FPGA and then estimate how many duplicate pipelines might fit.  
We encourage programmer experimentation.  
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A word of caution to FPGA programmers used to the virtually infinite resources available in 
today’s CPU based compute systems: do not code up the entire application first and then expect 
it to fit in a target FPGA.  We find that it better to approach FPGA programming in a step-wise 
fashion, progressing from very basic to more and more complex implementations.  Even simple 
algorithm coding benefits from five or six steps to the final implementation. 
 
Remember that FPGAs in today’s reconfigurable systems have improved a great deal over even 
two and three years ago.  Just a few years ago it was difficult to fit a single floating point 
operation into an FPGA.  Today, most or all of a single floating point algorithm from an 
application will likely fit into an FPGA.  Indications from established and startup FPGA vendors 
confirm that this trend will continue at roughly the same rate or better. 
 
As we develop the implementation of our example distance transform algorithm in section 5, we 
will discuss the FPGA resource utilization at each development step. 

3.5 Table driven calculations 
FPGAs are quite efficient at look-up table functions.  These tables map well to FPGA chip 
architectures and produce results within a single clock cycle.  
 
For example, consider the electrostatic interaction calculation between two atoms, one of the five 
force calculations used in the NAMD molecular dynamics simulation application1: 

∑∑
>

=
i ij ij

ji
Coulomb r

qq
U

04πε                                                        (4) 

 
Given a charge q for each atom type in your NAMD simulation, it is easy to build a look up table 
that yields a π4ji qq  value given two atoms i and j.  It is easy to see that pre-calculated tables 
will yield values more quickly than will a calculation engine for this sort of equation.  Also, a 
lookup table-based implementation will likely occupy less space than the actual calculation.  
Even better from a performance point of view, for a given NAMD simulation run, these look up 
tables values may be calculated and downloaded to the FPGA before the actual simulation run 
begins. 

3.6 CPU cache breakers 
In general, any application with data sets that break CPU cache data availability is a good 
candidate for reconfigurable computing.  This includes data sets that are widely scattered in main 
memory and data set sizes larger than cache sizes. 
 
An example of this is an output histogram application with a large number of result bins.  The 
output bin values are updated in an unpredictable order.  As the histogram bin count grows, it 
becomes more and more likely that any given bin value will not be available in the cache when it 
is needed, which results in a large number of high latency main memory accesses.  On the other 
                                                 
1 J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel, L. Kale, and K. 
Schulten, Scalable Molecular Dynamics with NAMD, Wiley Interscience (www.interscience.wiley.com), 26 May 
2005. 
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hand, the nature of FPGA programming dictates that all data is local to the FPGA before 
processing, and so, available when it is needed. 

4 Example Application Target System: SRC MAPstation  
In Section 5, we will work through several development iterations of our image distance 
transforms implementation on an FPGA.  But before we get to the good stuff, since different 
reconfigurable systems have different architectures that must be understood by the programmer, 
we will first discuss the target machine for this example: the SRC MAPstation with a MAP® 
Series C FPGA module.  We also introduce the SRC Carte™ programming environment. 

4.1 System Architecture 
We will consider the overall system architecture of the SRC MAPstation, then the detailed 
architecture of the MAP® Series C module that contains the FPGAs and FPGA memory.  

4.1.1 SRC MAPstation 
The SRC MAPstation (Figure 12) used for our example contains a commodity dual CPU board, a 
MAP® Series C processor, and an 8 Gbyte common memory module, all interconnected with a 
1.4 Gbyte/s low latency switch.  
 

MemoryMemory

SRC HiSRC Hi--Bar 4Bar 4--port Switchport Switch

CommonCommon
MemoryMemoryMAP®MAP®--CCSNAP™SNAP™

µPµP

PCIPCI--XX

Empty PortEmpty Port

Dual XeonDual Xeon
2.8 GHz, 1 GB memory2.8 GHz, 1 GB memory  

Figure 12 - SRC MAPstation Architecture 

 
The SNAP™ Series B interface board is used to connect the commodity dual CPU board to the 
Hi-Bar switch.  The SNAP™ plugs directly into a CPU board’s DIMM memory slot so that it 
can sustain a much higher data bandwidth than can the CPU’s I/O subsystem – roughly four 
times higher sustained bandwidth than that available from 133 MHz PCI-X. 
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While our system has the common memory module installed, it is not used in our example.  
Applications on the SRC MAPstation might typically use this common memory as large 
intermediate data storage between the CPU and FPGA memories. 

4.1.2 MAP® Series C Processor Module  
The MAP® Series C processor module (Figure 13) contains the two user FPGAs and the FPGA 
memory among other things that are not important for the purpose of this discussion.  
 

4.8 GB/s4.8 GB/s

2400 MB/s each2400 MB/s each GPIOGPIO

4.8 GB/s4.8 GB/s

1.4 GB/s1.4 GB/s
sustained sustained 
payloadpayload

1.4 GB/s1.4 GB/s
sustained sustained 
payloadpayload

OBMOBM
AA

OBMOBM
BB

OBMOBM
CC

OBMOBM
DD

OBMOBM
EE

OBMOBM
FF

DualDual--portedported
MemoryMemory
(4 MB)(4 MB) 4.8 GB/s4.8 GB/s

ControlControl
FPGAFPGA

User User 
FPGA 1FPGA 1

User User 
FPGA 0FPGA 0

192

64 6464646464

192

4.8 GB/s4.8 GB/s

108

64 6464646464

 
Figure 13 - SRC MAP® Series C Architecture 

 
There are six banks of MAP® Series C on-board memory (OBM A-F).  Each bank is 64 bits wide 
and 4 Mbytes deep for a total of 24 Mbytes. The programmer is responsible for application data 
transfer to and from these memories via the use of SRC programming macros invoked from the 
FPGA application.  All six of these on board FPGA memories are available to both of the user 
FPGAs, although not at the same time.  The OBM to user FPGA mapping and transfer of control 
is also the responsibility of the programmer, through the use of SRC programming macros. 
 
There is an additional 4 Mbyte of dual-ported memory dedicated solely to data transfer between 
the two FPGAs.  This is not directly visible to the programmer, but utilized through the use of 
SRC programming macros. 
 
The control FPGA is completely invisible to the programmer.  It provides the interface logic 
between the Hi-Bar switch and the MAP® Series C module. 
 

1/10/2006                                      HPRC Application Programming in C (v1.0)                                      Page 15 of 33 



The two user FPGAs in the MAP® Series C are Xilinx Virtex-2 V6000 FPGAs.  They each 
contain 6 million equivalent logic gates, 144 dedicated 18x18 integer multipliers, and 324 
Kbytes of internal dual-ported block RAM (BRAM).1  These FPGA elements are not directly 
visible to the programmer, but are interconnected appropriately as determined by the 
programmer’s C algorithm code, the SRC Carte™ programming environment tools, and the 
Xilinx FPGA place and route tools.  The FPGA clock rate of 100 MHz is set by the SRC 
programming environment. 
 
Our distance transform algorithm example in section 5 starts off with a CPU-only design, moves 
on to a single FPGA design, then finally describes an implementation that utilizes both FPGAs in 
the MAP® Series C. 

4.2 SRC Carte™ Programming Environment 
The programming environment (Figure 14) for the SRC MAPstation is highly integrated, and all 
compilation targets are generated via a single makefile.  The two main targets of the makefile are 
a debug version of the entire program and the combined CPU code and FPGA hardware 
programming files.  The debug version is useful for code testing before the final time intensive 
hardware place and route step.  Intel icc compiler is used to generate both the CPU-only debug 
executable and the CPU-side of the combined CPU/FPGA executable. 
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LinkerLinker

MAPMAP
LibraryLibrary

UnifiedUnified
executableexecutable

µP codeµP code
FPGA codeFPGA code
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Intel
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Figure 14 - SRC Carte™ Programming Environment 

 

                                                 
1 Xilinx, Inc., Virtex II Platform FPGAs: Complete Data Sheet, DS031 (v3.4), San Jose, CA, March 1, 2005, page 2. 
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The SRC MAP® compiler is invoked by the makefile to produce the hardware description of the 
FPGA design for final combined CPU/FPGA target executable.  This intermediate hardware 
description of the FPGA design is passed to the Xilinx ISE place and route tools, which produces 
the FPGA bit file.  Lastly, the linker is invoked to combine the CPU code and the FPGA 
hardware bit file(s) into a unified executable. 

5 Image Distance Transform Implementations 
Image distance transform is an operation that is typically performed on binary images.  The 
result of the transform is a gray scale image in which each background pixel is replaced with the 
shortest distance to the foreground pixels.  Figure 15 shows an example of a binary image and its 
distance transform.  It is often used in image processing applications to isolate a portion of an 
image for further processing. 
 

  
Figure 15 – Initial (left) and Distance Transformed (right) Images 

 
The simplest (and perhaps most inefficient) algorithm to compute the distance transform is as 
follows: for each background pixel compute distances to every foreground pixel and use the 
shortest found distance as the gray scale value that replaces that background pixel.  Assuming 
that half of the pixels belong to the foreground and half of the pixels belong to the background, 
the overall compute time is O(N2), which is the worst-case scenario as far as the ratio of the 
foreground and background pixels is concerned. 

5.1 Algorithm Performance Considerations 
Before moving on to the example algorithm development, we need to define and discuss the 
performance measurement details.  Figure 16 shows the three time components of the base line 
algorithm execution on a CPU: getting the image ready for the distance transform, actually 
computing the distance transform for each background pixel against all foreground pixels, and 
then the transformed image assembly. 
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Figure 16 - CPU-only Algorithm Performance Measurement 

 
For the combined CPU and FPGA algorithm performance measurement (Figure 17), the image 
decomposition and image assembly times are identical to the CPU-only measurements, but the 
distance transform compute time on the FPGA has four components: the transform compute time 
plus the FPGA overhead discussed in section 2.3.  In general, CPU vs. CPU/FPGA performance 
numbers needs to be examined with some care since some published algorithm performance 
numbers only compare the distance compute time of CPU vs. FPGA and leave out the FPGA 
usage overhead.  We are concerned here with actual system performance comparisons, as these 
complete performance numbers indicate the real benefit that a programmer may realize with a 
reconfigurable system. 
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Figure 17 - Combined CPU/FPGA Algorithm Performance Measurement 

 

5.2 CPU implementation 
Let us first consider a CPU implementation of the brute-force algorithm described in the 
previous section.  Figure 18 shows our image pixel row and column coordinate system for this 
implementation. There are up to m rows and n columns of pixels.  For convenience, we will map 
the two dimensional image array of pixels into a one dimensional array such that a single 
pixel img  may be indexed as 

[]img
],[ ji jmi +* . 

 
Distance calculations require pixel coordinates; therefore, we need to assemble separate lists of 
pixel coordinates ji,

n*
 belonging to the foreground and background pixels.  There can be no more 

than  foreground or background pixels. Therefore, we can allocate two arrays 
containing 

mMAXP =
MAXP*2  pixel coordinates each, which will be large enough to hold any possible 

number of foreground and background pixel coordinates for the image of size MAXP pixels.  
How much memory should we allocate for each pixel?  That depends on the size of the image: if 
the image size is less than 65536 pixels in both the i row and j column dimensions (and 
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65536x65536 pixels is a HUGE image!), then 'short int' is sufficient.  The background or 
foreground pixel ji  coordinates are stored in the appropriate list i first, then j. ,
 

Pixel column coordinate (j)
0    1     2    3     …               m

P
ixel row

 coordinate (i)
0    1     2    3     …

    n

 
Figure 18 - Image Pixel Coordinates (img[i*m+j]) 

 
Now we know all we need to allocate the memory for the lists of the pixel coordinates and to 
assemble the lists: 
 
  // allocate memory for the foreground/background pixel coordinate lists 
  short *fg_pixel = (short*)malloc(2*MAXP*sizeof(short)); 
  short *bg_pixel = (short*)malloc(2*MAXP*sizeof(short)); 
 
 // extract background and foreground pixels 
  int fgc = 0; // foreground pixels coordinate count 
  int bgc = 0; // background pixels coordinate count 
 
  for (i = 0; i < n; i++)                             // for each pixel row i in image 
  { 
   for (j = 0; j < m; j++)               // for all pixel columns in row i in image 
   { 
    if (img[i*m+j] == FOREGROUND)    // if this is a foreground pixel 
    { 
     fg_pixel[fgc] = i;                   // store [i,j] pixel location in fg_pixel list 
     fg_pixel[fgc+1] = j; 
     fgc += 2;                               
    } 
    else                                                  // else is a background pixel 
    { 
     bg_pixel[bgc] = i;                // store [i,j] pixel location in bg_pixel list 
     bg_pixel[bgc+1] = j; 
     bgc += 2; 
    } 
   } 
  } 
 
Note that at the end of this procedure, we know how many foreground and background pixels are 
stored: 2fgc  in the foreground list and 2bgc  in the background list. 
 

1/10/2006                                      HPRC Application Programming in C (v1.0)                                      Page 19 of 33 



Now we can allocate memory for the computed distance results.  We have 2fgc  foreground 
pixels in total and we should use 'float' as the result data type so that we do not compromise 
accuracy in case if any follow-up calculations are to be performed: 
 
  float *bg_distance = (float*)malloc((fgc/2)*sizeof(float)); 
 
At this point we are ready to perform the required distance calculations.  Also, since this is the 
computational core of our algorithm, we will measure how much time it takes to perform these 
calculations: 
 
  gettimeofday(&t0, NULL); 
 
  for (i = 0; i < bgc; i += 2)                                 // for each image background pixel 
  { 
   short x = bg_pixel[i]; 
   short y = bg_pixel[i+1]; 
   long d_min = 1000000; 
 
   for (j = 0; j < fgc; j += 2)                    // store the distance to the nearest foreground pixel 
   { 
    short dx = x - fg_pixel[j];  
    short dy = y - fg_pixel[j+1]; 
    long d = dx * dx + dy * dy; 
    if (d < d_min) 
     d_min = d; 
   } 
   bg_distance[i/2] = sqrt(d_min);        // new gray scale value for this background pixel 
  } 
 
  gettimeofday(&t1, NULL); 
 
The CPU distance calculation compute time is now simply: 
 
  t1.tv_sec - t0.tv_sec + (t1.tv_usec - t0.tv_usec) * 1e-6 
 
We still have to assemble the resulting image and free memory used in the process and free 
unneeded memory: 
 
  // add foreground pixels to the resulting image unchanged 
  for (k = 0; k < fgc; k += 2) 
   result_img[fg_pixel[k]* m+fg_pixel[k+1]] = FOREGROUND; 
 
  // add background pixels as the distance to the nearest foreground pixel 
  for (k = 0; k < bgc; k += 2) 
   result_img[bg_pixel[k]* m+bg_pixel[k+1]] = (short) bg_distance[k/2]; 
 
  free(fg_pixel); 
  free(bg_pixel); 
  free(bg_distance); 
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As we look at the code structure, it consists of image decomposition into the foreground and 
background pixel lists, distance transform, and image assembly as shown in Figure 16 (“overall 
computation time”).  How quickly does the “distance compute time” of this CPU-only code run?  
Figure 19 shows the compute time as a function of the number of foreground pixels for an image 
of 512x512 pixels.  As expected, time to compute will be the longest when one half of the pixels 
belong to the background and another half belongs to the foreground.  Perhaps a more desirable 
plot would be to show time to compute as a function of total number of distance calculations, 
which will effectively eliminate half of the plot shown in Figure 19.  We will return to this idea 
later as we port the code to FPGA and measure its performance. 
 

0.1

1

10

100

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

19
66

08

22
93

76

24
57

60

25
39

52

25
80

48

26
00

96

26
11

20

26
16

32

26
18

88

26
20

16

number of foregouund pixels

tim
e 

(s
)

 
Figure 19 – CPU Distance Compute Time 

 
What about time spent to decompose the image into background/foreground pixel and to lists and 
assemble the resulting image (the “overall computation time” minus the “distance compute time” 
of Figure 16)?  It turns out that these two procedures are very inexpensive since the number of 
operations needed to perform these procedures is lineal in the image size space and it does not 
require any expensive calculations – it is basically moving data in the CPU memory.  For 
example, for the 131072 foreground pixels case the execution time (wall clock time) of the entire 
code is 78.367 seconds whereas the execution time of the nested loop part of the code is 78.352 
seconds.  Therefore, in this particular application we can safely ignore the CPU memory data 
movement overhead due to these operations.  We encourage the programmer to keep in mind that 
this may not be the case in other applications. 

5.3 Easy FPGA implementation 
This is not meant to be a tutorial of how to use the SRC development tools and libraries; rather, it 
is an illustration of application programming.  We assume that the programmer has some 
familiarity with the SRC MAPstation and Carte™ Programming Environment documentation. 
 

1/10/2006                                      HPRC Application Programming in C (v1.0)                                      Page 21 of 33 



The first question that we need to answer is how to partition the application code between CPU 
and FPGA.  Since we already have done timing analysis of the CPU-only code and know that the 
image decomposition and image assembly operations are fast and the distance calculations 
nested loop is slow, then perhaps we should port the nested loop code segment to the FPGA and 
keep everything else on the CPU. 
 
The second question that we need to answer is how to deal with data movement between the 
FPGA memory and the CPU.  We need to supply FPGA with the coordinates of the foreground 
and background pixels and we expect the MAP® Series C processor to return a list of distances 
(Figure 20) which we can then re-map into a result image.  Note that the distance list should be 
in the same order as the list of the background pixels, otherwise we will not be able to properly 
reconstruct the output image. 
 

FPGA Memory

bg_distance=f(fg_pixel, bg_pixel)

fg_pixel bg_pixel bg_distance

 
Figure 20 - Easy FPGA Implementation Memory Layout 

 
Fortunately for us (or was that by design?), foreground and background pixel coordinates are 
already placed into 2 one-dimensional arrays and each pixel coordinate value occupies exactly 4 
bytes (short int).  This yields 2 sets of pixel coordinates per 64 bit word, which is the base data 
type in the MAP® Series C processor.  Therefore, on the CPU side of the code we can simply 
cast the fg_pixel and bg_pixel pointers to int64_t*.  Also, for performance reasons, we need to 
use different memory allocation functions: 
 
  short* fg_pixel = (short*)Cache_Aligned_Allocate(MAXP*sizeof(short)); 
  short* bg_pixel = (short*)Cache_Aligned_Allocate(MAXP*sizeof(short)); 
 
The same is true for the resulting distances: they are stored as a one-dimensional array of single 
precision floating point numbers, 2 pixel coordinate values per 64 bit word: 
 
  float* bg_distance = (float*)Cache_Aligned_Allocate((bgc/2)*sizeof(float)); 
 
Now we are ready to replace the nested loop code in the CPU code with a MAP® function call: 
 
  int64_t tm1, tm2, tm3;    // will be used to store timing measurements on the FPGA 
  int mapnum = 0; 
 
  gettimeofday(&t0, NULL); 
 
  dtransform_hw((int64_t *)fg_pixel, (int64_t *)bg_pixel, (int64_t *)bg_distance, 
    fgc/2, bgc/2, &tm1, &tm2, &tm3, mapnum); 
 
  gettimeofday(&t1, NULL); 
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Our job on the CPU side is done. (Note that map_allocate() needs to be called before 
dtransform_hw() and map_free() should be called after, but you already knew this from reading 
the SRC documentation, right?) 
 
At this point we can get some estimates about the FPGA code performance, even without 
implementing the code!  We know that we have 2)( bgcfgc +  pixel coordinate pairs to transfer 
into MAP® Series C memory and 2bgc  distances to transfer back to CPU memory, that’s 

( )( ) (( szfbgcszibgcfgcS ))⋅+⋅⋅+= 222)(  bytes in total, where szi is sizeof(short int) and szf is 
sizeof(float).  If we choose to use the striped DMA supported by the SNAP™ interface (section 
4.1.1), in one clock cycle we can transfer two 64 bit words (16 bytes) between CPU memory and 
MAP memory.  Therefore, the DMA data transfer will require 16S  clock cycles, or 91016 −⋅S  
seconds with a 100 MHz FPGA clock.  This is the total “DMA Data In” plus “DMA Data Out” 
time in Figure 17.  
 
Where do we put all the pixel coordinates in MAP memory?  This depends on the processing 
algorithm to be implemented on the MAP and on the overall image size.  For simplicity, let us 
first directly port the code as is, that is, implement just one calculation per loop.  In this case, we 
can put the foreground pixels to OBM bank A, background pixels to OBM bank B, and resulting 
distances to OBM band C (Figure 20).  This way the FPGA will be able to access both the source 
and destination FPGA memory in one clock cycle.  There is enough FPGA memory to store 
input coordinates of 1048576 pixels in each bank and store 1048576 computed distances in bank 
C.  This translates into an image size of, say, 1024x1024 pixels that we can process by just using 
3 OBM memory banks.  If a larger image needs to be processed, the remaining OBM banks can 
be used. 
 
Here is our MAP® function call that implements our nested loop code segment derived from the 
CPU-only code: 
 
  void dtransform_hw(int64_t fg_pixel[], int64_t bg_pixel[], int64_t bg_distance[],  
          int32_t fg_count, int32_t bg_count,  
          int64_t *tm1, int64_t *tm2, int64_t *tm3, int mapnum) 
  { 
   // declare FPGA memory  
   OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)     // foreground pixel coordinate list 
   OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE)     // background pixel coordinate list 
   OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE)     // distance result list 
 
   int i;                                     // background pixel list iterator 
   int j;                                     // foreground pixel list iterator 
  int32_t mindA, mindB;        //  minimum estimated distance for this j iteration 
   int32_t min_da, min_db;     //  running minimum distance for this i iteration 
   int64_t t0, t1, t2, t3;      // timers for “distance compute and FPGA overhead” in  Figure 17

Figure 17
 
   read_timer(&t0);    // “DMA data in” ( ) section starts here 
 
   // transfer foreground pixels from CPU memory to FPGA memory 
   DMA_CPU(CM2OBM, AL, MAP_OBM_stripe(1,"A"), fg_pixel, 1, fg_count*4, 0);  
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   wait_DMA(0); 
 
   // transfer background pixels from CPU memory to FPGA memory 
   DMA_CPU(CM2OBM, BL, MAP_OBM_stripe(1,"B"), bg_pixel, 1, bg_count*4, 0); 
   wait_DMA(0); 
 
   read_timer(&t1);    // “distance compute time” ( ) section starts here Figure 17

Figure 17

 
   for (i = 0; i < bg_count/2; i++)                 // for each pixel in the background list 
   { 
    for (j = 0; j < fg_count/2; j++)     // find the nearest foreground list pixel 
    { 
    // calculate the distance estimate for all forground pixels 
    // against the two j-th background pixels and keep a  
    // running minimum distance for both background pixels 
     distance(BL[i], AL[j], &mindA, &mindB); 
     cg_accum_imin_32(mindA, 1, 100000, j == 0, &min_da); 
     cg_accum_imin_32(mindB, 1, 100000, j == 0, &min_db); 
    } 
 
   // we have the minimum estimated distance for two background 
   // pixels, take the final square root of these and store to OBM C 
    comb_32to64_flt_flt(sqrt(min_da), sqrt(min_db), &CL[i]); 
   } 
 
  read_timer(&t2);   // “DMA data out” ( ) section starts here 
 
  // transfer out result array 
   DMA_CPU(OBM2CM, CL, MAP_OBM_stripe(1,"C"), bg_distance, 1, bg_count*4, 0); 
   wait_DMA(0); 
 
   read_timer(&t3);   // end timer for “DMA data out” 
 
   *tm1 = t1 - t0;    // store “DMA data in” time 
   *tm2 = t2 - t1;    // store “distance compute time” 
   *tm3 = t3 - t2;    // store “DMA data out” time 
   } 
 
  void distance(int64_t pBG, int64_t pFG, int32_t *min_d1, int32_t *min_d2) 
  { 
   int16_t pbg1y, pbg1x, pbg2y, pbg2x;  // two bg pixels (four coordinates total) from OBM B 
   int16_t pfg1y, pfg1x, pfg2y, pfg2x;     // two fg pixels (four coordinates total) from OBM A 
   int16_t p1xx, p1yy, p2xx, p2yy;         // estimated distance calculation results 
   int32_t d1, d2;                                   // minimum estimated distance calculation results 
 
  // split the input data into two bg and two fg pixel coordinate sets 
   split_64to16(pBG, &pbg1y, &pbg1x, &pbg2y, &pbg2x);   
   split_64to16(pFG, &pfg1y, &pfg1x, &pfg2y, &pfg2x);   
 
  // Calculate the distance estimate (equation 1 without the square root) 
  // for the first background pixel and the two foreground pixels, then 
  // store the lesser result in min_d1. 
 
   p1xx = pbg1x - pfg1x; 
   p1yy = pbg1y - pfg1y; 
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   d1 = p1xx * p1xx + p1yy * p1yy; 
 
   p2xx = pbg1x - pfg2x; 
   p2yy = pbg1y - pfg2y; 
   d2 = p2xx * p2xx + p2yy * p2yy; 
 
   *min_d1 = (d1 < d2) ? d1 : d2; 
 
  // Calculate the distance estimate (equation 1 without the square root) 
  // for the second background pixel and the two foreground pixels, then 
  // store the lesser result in min_d2. 
 
   p1xx = pbg2x - pfg1x; 
   p1yy = pbg2y - pfg1y; 
   d1 = p1xx * p1xx + p1yy * p1yy; 
 
   p2xx = pbg2x - pfg2x; 
   p2yy = pbg2y - pfg2y; 
   d2 = p2xx * p2xx + p2yy * p2yy; 
 
   *min_d2 = (d1 < d2) ? d1 : d2; 
  } 
 
Since the input pixel coordinates are packed into 64 bit words, each time the FPGA reads one 
data word from a single OBM bank, it reads coordinates for two consecutive pixels.  Therefore, 
in one clock cycle, the FPGA accesses two OBM banks: two pixels from the foreground list and 
two pixels from the background list, which allows it to compute 4 distances in parallel.  
 
Square root calculations are pipelined by the SRC compiler libraries for best performance, but 
still, square root calculation engines are expensive in terms of FPGA resources.  Note that the in-
lined distance() function calculates four distance estimates (the distance calculation without the 
square root) and returns only the two minimum distance estimates for that pass.  The 
cg_accum_imin_32() functions keep a running minimum distance estimate for the two 
background pixels in the i-th loop and the final square root calculation is performed after the 
distance to the nearest foreground pixels has been found for these two background pixels.  This 
allows for the instantiation of only two hardware square root engines in the FPGA rather than 
four, a substantial savings in FPGA resources. 
 
We take timestamps between various code segments so that we can get precise measurements of 
the time spent executing one or another section of the FPGA code.  Also note that this code will 
produce correct results only when the foreground pixels list has an even number of pixels in it 
since we do not perform any boundary checks.  This limitation can be fixed either on the CPU or 
FPGA side by either adding extra check, or by setting and extra pixel by duplicating one of the 
existing foreground pixels in case of odd foreground pixels list size. 
 
The SRC MAP® compiler shows that the inner loop was successfully pipelined and its pipeline 
depth is 16: 
 

##################        INNER LOOP SUMMARY      #################### 
loop on line 33: 

1/10/2006                                      HPRC Application Programming in C (v1.0)                                      Page 25 of 33 



    clocks per iteration:    1 
    pipeline depth:         16 
###################################################################### 

 
The Xilinx place & route tools show that the design fit into the MAP® Series C FPGA just fine 
and meets timing specifications: 
 

###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:      14,367 out of  67,584   21% 
  Number of 4 input LUTs:          10,070 out of  67,584   14% 
  Number of occupied Slices:       10,055 out of  33,792   29% 
  Number of MULT18X18s:                24 out of     144   16% 
  freq = 100.4 MHz 
###################################################################### 

 
Let’s run it and compare its performance to the CPU code performance.  Figure 21 shows both 
the time spent by the CPU and time spent on FPGA for the equal number of computed distances.  
The best overall speedup of ~1.8 times is achieved when there is at least 1056964608 distances 
are to be computed (which corresponds to having 4096 foreground pixels). 
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Figure 21 - CPU vs. FPGA Performance (1) 

 

5.4 Improved FPGA Implementation 
These results are not particularly exciting: 1.8x performance improvement for all of that work?  
What went wrong?  Nothing, really.  This illustrates our point on iterative development we first 
mentioned in section 3.4.  We suggest that a programmer needs to start out with a simple 
reconfigurable system implementation, examine the results, and work in a step-wise manner 
towards an acceptable implementation.  This is our first simple implementation of the image 
distance transform algorithm. 
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We encourage programmers to not be faint of heart: our first successful NAMD implementation 
on a reconfigurable system had a 200x slowdown.  This first implementation produced correct 
numerical results, but the performance results were not hopeful.  It took us ten iterations to get to 
a 3x speedup, and we are still working on this application.  The point is that it is important to get 
that first implementation running correctly at any performance, so that step-wise experimentation 
can guide the programmer as they carefully fit their application onto reconfigurable system 
architecture.  
 
So let’s take our own advice and look at the results of our first implementation of the image 
distance transform.  Let’s examine the timing details for the code executed on MAP® Series C 
with 32768 foreground pixels: 
 

----------------------------------------------------------- 
CPU time (overall)      : 18.986597 seconds 
CPU time (compute only) : 18.975332 seconds 
----------------------------------------------------------- 
FPGA time         : 18.909964 seconds (1890996366 clock cycles) 
  - data transfer : 0.002500 seconds (249981 clock cycles) 
    - in          : 0.001331 seconds (133060 clock cycles) 
    - out         : 0.001169 seconds (116921 clock cycles) 
  - COMPUTE       : 18.907464 seconds (1890746385 clock cycles) 
----------------------------------------------------------- 

 
A negligible amount of time was spent transferring data in and out, as expected, but quite a bit of 
time was spent doing actual calculations, 18.91 seconds in total.  Why is that?  Consider the 
following: for an image of size 512x512 pixels containing 32768 foreground pixels, there are 
(512*512-32768)* 32768=7516192768 distances to compute.  We perform 4 distance 
calculations per clock cycle, that’s 7516192768/4=1879048192 clock cycles, or 18.79 seconds.  
The remaining 1890996366-1890746385=249981 clock cycles were spent in outer loop 
execution, which was not pipelined.  Therefore, if we want to achieve a better overall code 
performance, we need to shrink the FPGA compute time.  Since FPGA frequency is fixed, this 
can only be achieved by performing more calculations at once.  But in order to perform more 
calculations we need to have simultaneous access to more data.  What are our options?  What do 
we need to consider? 
 
Unused OBM Memory.  There are three OBM memory banks on the MAP® Series C that we 
have not used.  If we put the background pixels in OBM A, use OBM B, C, D, and E for 
foreground pixels, and OBM F for results, then the FPGA has access to 8 foreground pixels in 
one clock cycle - we could speedup the calculations by a factor of 4.   
 
Loop Unrolling.  We are wasting 11948174 clock cycles for the i outer loop iterations.  We need 
to combine the i and j loop iterations.  
 
Internal FPGA Memory (BRAM).  We could utilize the internal FPGA memory, although its 
small size will limit the maximum size of images that we could process. 
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FPGA Multipliers.  The current design utilizes 16% of the available dedicated hardware 
multipliers on the FPGA, roughly 4% per calculation.  This indicates that we may be able to 
implement 20 or so distance calculations on a single FPGA in the MAP® Series C. 
 
Second MAP® Series C FPGA.  We will get more multipliers by splitting our design across the 
two user FPGAs in the MAP® Series C.  This, however, will prohibit us from using 4 OBM 
banks for storing the foreground pixels for the first FPGA – the second FPGA will require 
exclusive use of two OBM banks. 
 
What is the right answer?  As always, the answer is “it depends”.  We encourage 
experimentation on the part of the programmer.  When we get to this point, we depend heavily 
on trying several ideas and examining the performance results to guide us to a good solution.  
 
After a bit of experimentation, we came up with the following dual FPGA implementation.  Half 
of the background pixels are stored in OBM A, the other half are stored in OBM B.  Resulting 
computed distances are stored in OBM C and D.  The primary FPGA uses banks A and C, the 
second FPGA uses banks B and D, and each chip is responsible for computing half of the results.  
Foreground pixels are divided into 5 equal groups.  Four of these groups are stored in BRAM 
memory and the fifth in OBM.  This fifth group of foreground pixels is duplicated in OBM E and 
F – OBM E for the primary FPGA and OBM F for the secondary. 
 
Remember that each 64 bit input word contains a pair of pixels (4 coordinates) of data.  Thus, for 
each pair of the background pixels we have simultaneous access to 10 pairs of the foreground 
pixels on each FPGA chip (4 in BRAM, 1 in OBM times 2 pixels per word = 10 pairs of 
foreground pixels.)  This allows us to perform 20 simultaneous distance calculations on a single 
FPGA (5 parallel distance calculation engines, 4 parallel calculations per engine), or 40 
simultaneous distance calculations on the two FPGAs in the MAP® Series C module. 
 
That’s the good news.  The bad news is that we have a limit on the maximum number of 
foreground pixels in an image we intend to process.  Our implementation uses 4 banks of internal 
FPGA (BRAM) memory and 1 OBM bank to hold all of the foreground pixels.  We can’t split 
the foreground pixels between the FPGAs, either, remember that all foreground pixels have to be 
run against any one background pixel.  Each of the four BRAM banks may be 64 bits wide, 
which is fine, but the BRAM array index maximum value must be a multiple of 2 and not exceed 
the total available BRAM on the FPGA.  This allows us to declare four 64 bit arrays of 8192 
elements each.  This yields 8192 elements per array multiplied by 8 bytes per element multiplied 
by 4 arrays = 262144 bytes, which does not exceed the maximum 324000 bytes of BRAM 
available on the Virtex 2v6000 FPGA. 
 
We can store 2 pixels in each 64 bit word, so we can store 8192 elements per BRAM array 
multiplied by 2 pixels per element = 16384 pixels per array.  We have 4 BRAM arrays and 1 
OBM array for foreground pixels, so we are limited to images with 81920 foreground pixels or 
less. 
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The source code for the primary chip follows; the computational section of the code for the 
secondary chip is similar.  Note that we use the same inlined distance() function introduced in 
section 5.3 and that the CPU side code for this implementation does not change. 
 
  void dtransform_hw(int64_t fg_pixel[], int64_t bg_pixel[], int64_t bg_distance[],  
          int32_t fg_count, int32_t bg_count,  
          int64_t *tm1, int64_t *tm2, int64_t *tm3, int mapnum) 
  { 
  // declare FPGA on-board memory 
   OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE) 
   OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE) 
   OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE) 
  OBM_BANK_D (DL, int64_t, MAX_OBM_SIZE) 
  OBM_BANK_E (EL, int64_t, MAX_OBM_SIZE) 
  OBM_BANK_F (FL, int64_t, MAX_OBM_SIZE) 
 
  // declare internal FPGA memory (BRAMs) 
  int64_t fg_pix01[8192]; 
  int64_t fg_pix02[8192]; 
  int64_t fg_pix03[8192]; 
  int64_t fg_pix04[8192]; 
 
  int64_t v0;   // primary and secondary FPGA common parameters 
  int 64_t count;   // iterator used for splitting up the foreground pixels 
  int 64_t indx;   // index used to determine split of foreground pixels 
  int 64_t k;   // main computational loop counter 
  int 64_t nofiterations;  // main computational loop maximum count 
  int64_t t0, t1, t2, t3;  // sectional performance timers 
  int32_t i, j;    // image row and column indices 
 
  // pairs (a,b) of minimum distances calculated by distance() function number 1-5 
  int32_t mind01a, mind02a, mind03a, mind04a, mind05a; 
  int32_t mind01b, mind02b, mind03b, mind04b, mind05b; 
 
  // pair (a,b) of running minimum estimated distances 
  int32_t mindAa, mindAb; 
 
  // pair (a,b) of minimum estimated distances 
  int32_t min_da, min_db; 
 
  read_timer(&t0);    // “DMA data in” ( ) section starts here Figure 17
 
  // sync primary and secondary FPGA, no OBM permissions granted at this time 
  send_perms(0); 
 
  // send common parameters to secondary FPGA 
  comb_32to64(fg_count, bg_count, &v0); 
  send_to_bridge(v0); 
 
  // copy the foreground pixel data from CPU memory to FPGA on board memory 
  DMA_CPU(CM2OBM, AL, MAP_OBM_stripe(1,"A,B,C,D,E"), fg_pixel, 1, fg_count*4, 0);  
  wait_DMA(0); 
 
  // split the foreground pixels into five pieces: four to BRAM 
  // and one to OBM E. 
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  count = ((fg_count % 10) ? fg_count+10 : fg_count)/10; 
  for (k = 0; k < count; k++) 
  { 
   indx = k * 10; 
   fg_pix01[k] = AL[k]; 
   fg_pix02[k] = (indx+2 >= fg_count) ? AL[k] : BL[k]; 
   fg_pix03[k] = (indx+4 >= fg_count) ? AL[k] : CL[k]; 
   fg_pix04[k] = (indx+6 >= fg_count) ? AL[k] : DL[k]; 
   if (indx+8 >= fg_count) 
   EL[k] = AL[k]; 
  } 
 
  // let the secondary FPGA get set up with the foreground pixel data 
  send_perms(OBM_A | OBM_B | OBM_C | OBM_D | OBM_E | OBM_F); 
 
  // wait for the secondary FPGA to return 
  send_perms(0); 
 
  // copy the background pixel data from CPU memory to FPGA on board 
  // memory – half to OBM A and half to OBM B 
  DMA_CPU(CM2OBM, AL, MAP_OBM_stripe(1,"A,B"), bg_pixel, 1, bg_count*4, 0); 
  wait_DMA(0); 
 
  // give the secondary FPGA control of its OBM data 
  send_perms(OBM_B | OBM_D | OBM_F); 
 
  read_timer(&t1);   // “distance compute time” ( ) section starts here Figure 17
 
  // main unrolled computational loop – for all background pixels 
  nofiterations = count*(((bg_count % 4) ? bg_count+3 : bg_count)/4); 
  for (k = 0; k < nofiterations; k++) 
  { 
   // i and j (image pixel row and column) index counters 
   cg_count_ceil_32 (1, 0, k == 0, count-1, &j); 
   cg_count_ceil_32 (j==0, 0, k == 0, 0xffffffff, &i); 
 
   // parallel distance function calls 1-5 
   distance(AL[i], fg_pix01[j], &mind01a, &mind01b); 
   distance(AL[i], fg_pix02[j], &mind02a, &mind02b); 
   distance(AL[i], fg_pix03[j], &mind03a, &mind03b); 
   distance(AL[i], fg_pix04[j], &mind04a, &mind04b); 
   distance(AL[i], EL[j], &mind05a, &mind05b); 
 
   // find the minimum for each set (a,b) of the five distance calculations 
   // (combine the results of the parallel calculations) 
   mindAa = min5(mind01a, mind02a, mind03a, mind04a, mind05a); 
   mindAb = min5(mind01b, mind02b, mind03b, mind04b, mind05b); 
 
   // keep running minimum distances for each pair (a,b) 
   cg_accum_imin_32(mindAa, 1, 100000, j == 0, &min_da); 
   cg_accum_imin_32(mindAb, 1, 100000, j == 0, &min_db); 
 
   // take the square root of this iteration’s pair (a,b) estimated distances,  
   // combine, and store 
   comb_32to64_flt_flt(sqrt(min_da), sqrt(min_db), &CL[i]); 
  } 
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  // sync primary and secondary FPGA and get all OBM permissions back 
  send_perms(0); 
 
  read_timer(&t2);     // “DMA data out” (Figure 17) section starts here 
 
  // transfer out result arrays 
  DMA_CPU(OBM2CM, CL, MAP_OBM_stripe(1,"C,D"), bg_distance, 1, bg_count*4, 0); 
  wait_DMA(0); 
 
  read_timer(&t3);    // end timer for “DMA data out” 
 
  *tm1 = t1 - t0;    // store “DMA data in” time 
  *tm2 = t2 - t1;    // store “distance compute time” 
  *tm3 = t3 - t2;    // store “DMA data out” time 
 } 
 
 int32_t min5(int32_t a, int32_t b, int32_t c, int32_t d, int32_t e) 
  { 
  int32_t ab, cd, cde; 
 
  ab = (a < b) ? a : b; 
  cd = (c < d) ? c : d; 
  cde = (cd < e) ? cd : e; 
 
  return (ab < cde) ? ab : cde; 
  } 
 
We added another inlined function, min5(), a function to find the minimum of five integers.  We 

ote that the FPGA code has to do more work now – it needs to bring in all of the foreground 

he MAP® compiler shows that the unrolled loop was successfully pipelined and its pipeline 

##################        INNER LOOP SUMMARY      #################### 

ration:    1 

op on line 86: 
ration:    1 

####################################### 
 

he Xilinx place and route tools show that the design fits in and meets timing specifications: 

###############        PLACE AND ROUTE SUMMARY    #################### 

needed this because we have five parallel distance calculations that return one-fifth of the 
distance calculations.  min5() is used to combine these results. 
 
N
pixels first and divide them up among the 5 arrays before bringing in the background pixels.  
There is also some code that controls which of the two FPGAs has access to which OBM banks. 
 
T
depth is 90: 
 

loop on line 57: 
    clocks per ite
    pipeline depth:         10 
 
lo
    clocks per ite
    pipeline depth:         90 
################################

T
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  Number of Slice Flip Flops:      26,479 out of  67,584   39% 
  Number of 4 input LUTs:          17,819 out of  67,584   26% 
  Number of occupied Slices:       17,558 out of  33,792   51% 
  Number of Block RAMs:               128 out of     144   88% 
  Number of MULT18X18s:               140 out of     144   97% 
  freq = 100.1 MHz 
###################################################################### 

 
et’s have a look at the code performance executed with 32768 foreground pixels: 

----------------------------------------------------------- 

--------------- 
 

s) 

 
his time we spent 187916437 clock cycles to perform actual calculations, which is about 1/10 

L
 

CPU time (overall)      : 2.029390 seconds 
CPU time (compute only) : 2.017544 seconds 
--------------------------------------------
FPGA time         : 1.880733 seconds (188073328 clock cycles)
  - data transfer : 0.001569 seconds (156891 clock cycles) 
    - in          : 0.000855 seconds (85492 clock cycles) 
    - out         : 0.000714 seconds (71399 clock cycles) 
  - COMPUTE       : 1.879164 seconds (187916437 clock cycle
----------------------------------------------------------- 

T
of what our original code produced.  The overall compute time is now 2.02 seconds compared to 
18.98 seconds in the first FPGA implementation.  This gives us 17x speedup compared to only 
about 1.8x produced by our first implementation.  Figure 22 shows the complete performance 
results for this implementation. 
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Figure 22 - CPU vs. FPGA Performance (2) 

 
 our 17x performance improvement for the image distance transform algorithm the best Is

possible speedup?  The answer is “no”.  In the near term, perhaps there is some clever algorithm 
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operation portioning or data organization that could yield even better performance.  In the longer 
term, the growth in FPGA resources and clock rates guarantees better application performance. 

6 Summary 
In this white paper, we introduced how to get started with application programming in C on 
reconfigurable systems, discussed metrics that qualitatively indicate the potential value of 
porting a given application to a reconfigurable system, and then walked through three example 
iterations of algorithm development on an SRC MAPstation.  We discussed reconfigurable 
system architectures and various approaches for a programmer to gain application acceleration, 
and in doing so, cautioned the programmer that reconfigurable systems for scientific applications 
are a relatively new development in computer architecture.  And like all new developments in 
computer architecture, reconfigurable systems require that an application programmer learn a 
new set of best practices and rules of thumb (“application programming”). 
 
The FPGA portion of today’s reconfigurable systems does not have the nearly infinite resources 
that programmers currently enjoy on CPU-only systems.  Working with relatively limited 
resources requires some work and cleverness on the part of the programmer, but even so, we 
have developed performance improvements of 3x to 40x on reconfigurable systems for several 
scientific applications with real world data sets.  Remember the limited resources of the 
computers of even five years ago?  Contrast that with the resources of today’s CPU-only systems 
and keep in mind that the technology growth curve for FPGAs exceeds that predicted by 
Moore’s Law for CPUs.  We are starting at 3x to 40x performance improvements today.  We do 
not dare to predict typical performance improvements realizable from reconfigurable systems 
over the next five years for fear of being thought short-sighted by scientific application 
programmers in 2010. 
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