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TPACF Defined
• Calculates frequency distribution of angular 

separations between data coordinate positions, 

compared to randomly distributed positions in the 

same space [1]

• Correlation functions are used in a variety of 

scientific disciplines

• Specific application: for Sloan Digital Sky Survey, 

calculates probability that a star or galaxy will be 

found at a given angular distance from another [1] 

astronomical object

[1] 2pacf Project Application Information Sheet.pdf
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TPACF Defined

• Inputs

– One set of spherical coordinates representing 

astronomical bodies, with M data points

– N randomly generated sets of spherical 

coordinates with M data points each
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TPACF Defined

• DD: data points correlated with self

• DR: data points correlated with a random set

• RR: set of random points correlated with self

[1] 2pacf Project Application Information Sheet.pdf

[1]
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TPACF Defined

• Steps involved:

– Conversion of data and random points from 

spherical to Cartesian coordinates

– Calculate DD, DR, and RR

• Dot product

• Binning of results into histogram

– Summations of DRs and RRs for each theta value

– Calculation of w(theta)
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Parallelism in TPACF

• Conversion of data points 

• All dot products of DD, DR, and RR are independent 

both within data sets and across data set pairs

• The creation of histograms is difficult because we 

need to load a bin value from shared memory, 

increment the value, and store the value back without 

losing values due to thread-scheduling race 

conditions
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Single-Precision Issues

• The gold code relies on double precision floating 

point values to represent both the coordinates of the 

data points, the bin boundaries of the histograms, 

and the bin count within the histograms

• At least 41 bits of fixed-point precision are required 

to reproduce the results of the gold code with 

complete accuracy.

• Only single point precision is supported in CUDA 

for now



© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Single-Precision Issues

• Histogram bin boundaries are exponentially increasing

• With double point precision thirty distinct bins can be 

represented

• Lower bins cannot be differentiated in single precision

• Conversion from double to single floating point precision 

results in only 20 bins

• Loss of the lower ten bins (but these held only a small 

percentage of distances)
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Implementation Version 1

• Two kernel functions

• One kernel processes the data

– Each call correlates one DD, DR, or RR

– One call for DD

– N calls for DRs, one for each R; similarly for Rrs

– MxM coordinate pairs to correlate in each call

– Autocorrelations (DD, RRs) treated like any 
others

• does twice as much work as neccessary
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Implementation Version 1

• Each warp generates a histogram using 
synchronization technique from class slides

– Each block coalesces its warp histograms into one 
output histogram

• Second kernel function is called multiple times to 
coalesce histograms generated by first kernel

– Summation is by binary tree, similar to scan

– log(x) iterations, where x is num of blocks used in 
first kernel function
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Implementation Version 1

• Finally, results from DRs and RRs combined into 
their summation terms

• w(theta) calculated for each theta (each histogram 
bin) from DD term and DR, RR summation terms
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Implementation Version 2

• Exploit Parallelism between data sets

• 1 kernel call

• 201 blocks ( 1 DD, 100 DR, 100 RR) with 
100 random datasets

• Each DR block does (number of elements)2

calculations

• DD and RR around half that
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Implementation Version 2

• Calculations left on CPU

– Conversion of data points from Spherical to 
Cartesian coordinates

– Summing of DR and RR sets for omega function 
calculation

• Done due to relatively small number of 
calculations performed (for summing only 
100 summations for N=100 random sets) 
versus high overhead
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Implementation Version 2

• Bring BLOCK_SIZE elements from both data 
sets into shared memory at a time

• For each element in first data set get dot 
product with all elements from second set

• Get the next BLOCK_SIZE elements

• Requires NUM_ELEMENTS global loads for 
first dataset

• (NUM_ELEMENTS)2/BLOCK_SIZE global 
loads for second
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Implementation Version 2: 
Advantages

• Easier to program

• Less overall code (1 vs 2 kernels)

• Reduced overhead:

– Single kernel call

– Fewer histograms to coalesce
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Implementation Version 2: 
Disadvantages

• Handling of larger values slightly more 
difficult 

• Higher register usage (approaching SM limit)

• Only one block can be resident on an SM at a 
time

• Parallelism does not scale
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Histogram Correctness

• Algorithm from  lecture slides:
– Increment bin and write to memory with a thread 

tag in upper bits

– Read memory and make sure value is correct and 
thread tag matches

– Repeat until match

• Compiler optimized away loading from 
shared memory in loop condition check

• Solution: declare warp histogram as “volatile 
__shared__”
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Histogram Performance

• Performance depends on number of histogram 
binning conflicts (needing to rewrite bin info)

• More histograms per warp = less binning conflicts

• For 10 datasets and 2048 points:

– 280ms for 1 histogram per warp

– 200ms for 2 histograms per warp

– 150ms for 4 histograms per warp

– 115ms for 8 histograms per warp*

– 100ms for ideal zero conflict scenario

• Effects of conflicts mitigated
* Kernel failed to run in feature rich version, most likely due to too high register usage
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Final Results

• Implementation 2 easily achieves speedup, 1 
only for large datasets

– But only when bin counts fit within 30 bits of 
precision (full data set results in overflow)

– DD/DR/RR values are not exact though

– Particularly in lower bins, difference from gold 
code varies, but stays within 10%

– Upper bins exact or <1% difference

– Due to GPU floating point implementation 
differences (emulation is exact)
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Final Results

• For case of 2048 points per data point set, and 10 
random sets
– Gold: 2 seconds

– Implementation 2: 0.115 second

– 17x speedup

• Full data set values not found due to running time 
increasing exponentially (> 7 seconds leads to 
crashes)
– But speedup increases the more data sets available (more 

blocks available)

• Register usage causing kernel failures and histogram 
binning method were limiting factors 
– V2 performance speedup were still near ideal
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Future Optimization Ideas

• Break the higher order bins into multiple bins

– Less binning conflicts

• Use texture memory to implement a table 
lookup on higher order bins (replaces binary 
search and check against bin boundaries)

• Try an alternative histogram binning scheme 
that efficiently handles conflicts
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TPACF Thoughts

• TPACF lends itself readily to parallel 
implementation

– Large number of independent floating point 
calculations

– Data can be logically partitioned (DD, DR, RR)

• Difficulties:

– Shared memory usage and register usage were 
pushed to limits

– Histogram implementation (no atomic increment)
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G80 Programming Thoughts

• Kernel crashes:
– Very difficult to debug

– Often leaves memory untouched, so can mislead 
into thinking the kernel completed successfully

– Kernel crash error messages largely unhelpful

• Need for volatile keyword with shared 
memory unexpected (assumed unnecessary)

• Inability to debug shared memory usage in 
emulation mode was an annoyance (forced to 
use printfs or explicitly store in registers)
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Conclusion

• Algorithm successfully ported to CUDA, with 
32 bit precision and resource usage being 
greatest limiting factors for performance and 
accuracy

• Future hardware versions should address this

• CUDA shown to be capable of improving 
correlation function calculation greatly


