
© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

T P A C F
(Two-Point Angular Correlation Function)

Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Outline

• TPACF Defined

• Parallelism in TPACF

• Single-Precision Issues

• Implementation Version 1

• Implementation Version 2

• Performance Comparisons

• Conclusion

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

TPACF Defined
• Calculates frequency distribution of angular

separations between data coordinate positions,

compared to randomly distributed positions in the

same space [1]

• Correlation functions are used in a variety of

scientific disciplines

• Specific application: for Sloan Digital Sky Survey,

calculates probability that a star or galaxy will be

found at a given angular distance from another [1]

astronomical object

[1] 2pacf Project Application Information Sheet.pdf

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

TPACF Defined

• Inputs

– One set of spherical coordinates representing

astronomical bodies, with M data points

– N randomly generated sets of spherical

coordinates with M data points each

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

TPACF Defined

• DD: data points correlated with self

• DR: data points correlated with a random set

• RR: set of random points correlated with self

[1] 2pacf Project Application Information Sheet.pdf

[1]

1

2

1

0

1

0

R

R

n

i

i

n

i

iR

RR

DRDDn

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

TPACF Defined

• Steps involved:

– Conversion of data and random points from

spherical to Cartesian coordinates

– Calculate DD, DR, and RR

• Dot product

• Binning of results into histogram

– Summations of DRs and RRs for each theta value

– Calculation of w(theta)

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Parallelism in TPACF

• Conversion of data points

• All dot products of DD, DR, and RR are independent

both within data sets and across data set pairs

• The creation of histograms is difficult because we

need to load a bin value from shared memory,

increment the value, and store the value back without

losing values due to thread-scheduling race

conditions

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Single-Precision Issues

• The gold code relies on double precision floating

point values to represent both the coordinates of the

data points, the bin boundaries of the histograms,

and the bin count within the histograms

• At least 41 bits of fixed-point precision are required

to reproduce the results of the gold code with

complete accuracy.

• Only single point precision is supported in CUDA

for now

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Single-Precision Issues

• Histogram bin boundaries are exponentially increasing

• With double point precision thirty distinct bins can be

represented

• Lower bins cannot be differentiated in single precision

• Conversion from double to single floating point precision

results in only 20 bins

• Loss of the lower ten bins (but these held only a small

percentage of distances)

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 1

• Two kernel functions

• One kernel processes the data

– Each call correlates one DD, DR, or RR

– One call for DD

– N calls for DRs, one for each R; similarly for Rrs

– MxM coordinate pairs to correlate in each call

– Autocorrelations (DD, RRs) treated like any
others

• does twice as much work as neccessary

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 1

• Each warp generates a histogram using
synchronization technique from class slides

– Each block coalesces its warp histograms into one
output histogram

• Second kernel function is called multiple times to
coalesce histograms generated by first kernel

– Summation is by binary tree, similar to scan

– log(x) iterations, where x is num of blocks used in
first kernel function

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 1

• Finally, results from DRs and RRs combined into
their summation terms

• w(theta) calculated for each theta (each histogram
bin) from DD term and DR, RR summation terms

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 2

• Exploit Parallelism between data sets

• 1 kernel call

• 201 blocks (1 DD, 100 DR, 100 RR) with
100 random datasets

• Each DR block does (number of elements)2

calculations

• DD and RR around half that

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 2

• Calculations left on CPU

– Conversion of data points from Spherical to
Cartesian coordinates

– Summing of DR and RR sets for omega function
calculation

• Done due to relatively small number of
calculations performed (for summing only
100 summations for N=100 random sets)
versus high overhead

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 2

• Bring BLOCK_SIZE elements from both data
sets into shared memory at a time

• For each element in first data set get dot
product with all elements from second set

• Get the next BLOCK_SIZE elements

• Requires NUM_ELEMENTS global loads for
first dataset

• (NUM_ELEMENTS)2/BLOCK_SIZE global
loads for second

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 2:
Advantages

• Easier to program

• Less overall code (1 vs 2 kernels)

• Reduced overhead:

– Single kernel call

– Fewer histograms to coalesce

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Implementation Version 2:
Disadvantages

• Handling of larger values slightly more
difficult

• Higher register usage (approaching SM limit)

• Only one block can be resident on an SM at a
time

• Parallelism does not scale

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Histogram Correctness

• Algorithm from lecture slides:
– Increment bin and write to memory with a thread

tag in upper bits

– Read memory and make sure value is correct and
thread tag matches

– Repeat until match

• Compiler optimized away loading from
shared memory in loop condition check

• Solution: declare warp histogram as “volatile
__shared__”

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Histogram Performance

• Performance depends on number of histogram
binning conflicts (needing to rewrite bin info)

• More histograms per warp = less binning conflicts

• For 10 datasets and 2048 points:

– 280ms for 1 histogram per warp

– 200ms for 2 histograms per warp

– 150ms for 4 histograms per warp

– 115ms for 8 histograms per warp*

– 100ms for ideal zero conflict scenario

• Effects of conflicts mitigated
* Kernel failed to run in feature rich version, most likely due to too high register usage

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Final Results

• Implementation 2 easily achieves speedup, 1
only for large datasets

– But only when bin counts fit within 30 bits of
precision (full data set results in overflow)

– DD/DR/RR values are not exact though

– Particularly in lower bins, difference from gold
code varies, but stays within 10%

– Upper bins exact or <1% difference

– Due to GPU floating point implementation
differences (emulation is exact)

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Final Results

• For case of 2048 points per data point set, and 10
random sets
– Gold: 2 seconds

– Implementation 2: 0.115 second

– 17x speedup

• Full data set values not found due to running time
increasing exponentially (> 7 seconds leads to
crashes)
– But speedup increases the more data sets available (more

blocks available)

• Register usage causing kernel failures and histogram
binning method were limiting factors
– V2 performance speedup were still near ideal

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Future Optimization Ideas

• Break the higher order bins into multiple bins

– Less binning conflicts

• Use texture memory to implement a table
lookup on higher order bins (replaces binary
search and check against bin boundaries)

• Try an alternative histogram binning scheme
that efficiently handles conflicts

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

TPACF Thoughts

• TPACF lends itself readily to parallel
implementation

– Large number of independent floating point
calculations

– Data can be logically partitioned (DD, DR, RR)

• Difficulties:

– Shared memory usage and register usage were
pushed to limits

– Histogram implementation (no atomic increment)

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

G80 Programming Thoughts

• Kernel crashes:
– Very difficult to debug

– Often leaves memory untouched, so can mislead
into thinking the kernel completed successfully

– Kernel crash error messages largely unhelpful

• Need for volatile keyword with shared
memory unexpected (assumed unnecessary)

• Inability to debug shared memory usage in
emulation mode was an annoyance (forced to
use printfs or explicitly store in registers)

© Scott Bai, Ali Hussain, Gene Wu, Nicolas Zea

ECE 498AL, University of Illinois, Urbana-Champaign

Conclusion

• Algorithm successfully ported to CUDA, with
32 bit precision and resource usage being
greatest limiting factors for performance and
accuracy

• Future hardware versions should address this

• CUDA shown to be capable of improving
correlation function calculation greatly

