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P a r t  3

APPLICATIONS

In the two previous parts it was shown how images of objects can be obtained and processed
in order to extract useful information about the objects. In this part different applications of
image processing and analysis techniques to solve real problems are discussed. The first
application shows how image analysis can be used in environmental research on aerosols. A
method for the classification of individual aerosol particles into two main groups, fly as and
soil dust, according to their shape is presented. The obtained results allow the unequivocal
identification of the particle source, which is especially important when the chemical
composition of the particles is nearly the same. The second application is also related to
environmental research. It is shown how the differentiation between individual algae cells
and their agglomerates can be done using information obtained from the analysis of their
shape. The results show the ability of the developed method to perform this type of
classification. The third example is related to the material research. A method for the
classification of individual tabular grain silver halide microcrystals into three main groups,
namely, hexagonal, regular triangular and truncated triangular microcrystals, according to
their shape is presented. Often microcrystals are partially overlapping as seen in the SEM
images and they form irregularly shaped ensembles. A method to reconstruct the
microcrystals from such ensembles is also presented. The methods can be used for fast
analysis of the shape of microcrystals which is especially important for the development of
photographic materials. The last application is related to study of many-particle systems. The
unique physical and chemical properties of such systems make them of great fundamental
interest. Image analysis in combination with zero-loss electron spectroscopic imaging is
applied to study many-particle systems and percolation networks.
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3.1. Classification of individual fly
ash and soil dust aerosol particles

A method for the classification of individual aerosol particles into one of two main groups,
namely, fly ash and soil dust, is discussed. It is based on the calculation of the fractal
dimension of the images of the particles obtained with the computer-controlled scanning
electron microscope. The risk of an improper determination of the fractal dimension is
pointed out. It is shown that spherically shaped particles do not posses fractality. The rarely
met fly ash particles with very irregular shape posses two types of the fractal dimensions,
namely, textural and structural. On the other hand, it is found that the soil dust particles have
only a textural fractal dimension. The obtained results allow the unequivocal identification of
the particle source, which is especially important when the chemical composition of the
particles is nearly the same.

3.1.1. Introduction

Analysis of individual aerosol particles can yield very important environmental information,
the relevance of which cannot be overestimated. However, the identification and
apportionment of the sources of the particles is often complicated because particles,
originating from different sources, can have similar compositions. The most widespread
example is fly ash (usually originating from combustion) and soil dust particles (usually clay
minerals) which have nearly the same compositions (Fig. 3.1.1). The only parameter, which
allows to differentiate between them, is the shape. Therefore, the characterization of the
shape of aerosol particles is very genuine. The problem is, however, in revealing and
representing the shape.

At least, four different methods of aerosol particle shape representation are possible [3.1.1].
The first and the oldest one is based on different shape factors. The main disadvantage is
that shape factors are integral characteristics and, as such, may not be sensitive enough to the
details of the particle shape. The other three methods are fractal and Fourier analyses and
chain coding. Chain coding has been used for shape description while Fourier analysis is a
well-established method of shape characterization. The fractal approach to shape
characterization certainly is more exotic although there are numerous works [3.1.2, 3.1.3],
which deal with the determination of fractal dimension, [3.1.4-3.1.6], where fractal approach
is applied to the description of the shape of different particles. In the present study the
applicability of fractals for morphological description of the shapes of individual aerosol
particles studied with computer-controlled scanning electron microscopy in combination
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with energy-dispersive X-ray microanalysis (CC SEM-EDX) is examined.

    
Fig. 3.1.1. a) spherically shaped fly ash and b) irregularly shaped soil dust aerosol particles
have similar chemical compositions.

3.1.2. Types of shapes of aerosol particles

Aerosol particles are characterized by a large variety of sizes and shapes. The shape of the
particle is mainly determined by its origin. When dealing with continental aerosols, two main
types of aerosol particles, viz. fly ash and soil dust, can be observed. Fly ash originates from
various kinds of combustion processes (power plants, metallurgical plants, cars and other
urban sources, etc.), whereas soil dust originates from soil or earth crust dispersion. As a
consequence, soil dust particles have a rather pronounced, sometimes very irregular, shape.
According to light microscopy studies [3.1.7], fly ash particles can be classified into eleven
shape classes, viz.: 1) amorphous, nonopaque; 2) amorphous, opaque; 3) amorphous, mixed
opaque and nonopaque; 4) rounded, vesicular, nonopaque; 5) rounded, vesicular, mixed
opaque and nonopaque; 6) angular, lacy, opaque; 7) nonopaque, cenosphere; 8) nonopaque,
plerosphere; 9) nonopaque, solid sphere; 10) opaque sphere; 11) nonopaque sphere with
crystals. SEM investigations [3.1.8] allow to recognize seven categories of ash particles,
namely: 1) unfuzed detrital minerals (principally quartz); 2) irregular-spongy particles derived
from partly-fused clay minerals; 3) vesicular colourless glass (in the form of irregular particles
and cenospheres), derived from viscous melts; 4) solid glass (mostly in the form of spherical
particles), derived from fluid melts; 5) dendritic iron oxide particles (mostly spherical); 6)
crystalline iron oxide particles (mostly spherical); and 7) unburnt char particles. However, in
spite of a such variety of shapes, spherical particles are the most abundant. Depending on the
size distribution their relative abundance reaches sometimes 86% [3.1.7].

The composition of the fly ash particles is not so variable as their shape. Among the two
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main classes there are particles rich in silicon and aluminum oxides (main fraction), and
those, rich in iron oxide [3.1.8]. As regards the soil dust particles, aluminosilicates constitute
their main fraction.

Summarizing, it can be stated that soil dust particles normally have pronounced, irregular
shapes, whereas the majority of the fly ash particles have spherical shapes, and limited
number of fly ash particles show a very irregular shape. The composition of most of the fly
ash and soil dust particles is very similar. In order to study the possibilities of the fractal
characterization of the shape, the following three different types of particles were examined:
1) soil dust; 2) fly ash of spherical shape; and 3) fly ash with irregular shape.

3.1.3. Fractal description of particle shapes: a
brief overview

From the specific point of view of shape characterization of microscopic particles the main
aim of the fractal approach is to find a 'measure' to distinguish between curves with different,
often very complicated, contours. The main idea is to describe the complexity of the curve
through a new parameter, the fractal dimension, so as to fill in the gap between one- and
two-dimensional objects (for objects on a plane). The more complex the contour of the
curve, the more it covers the plane in a dense manner and the more its fractal dimension will
be close to 2.

The fractal concept is not strictly defined. In spite of this there is a consensus that fractal
objects (among other important features) normally possess a too irregular structure to be
described by traditional geometrical or topological approaches. The main characteristic of
fractals is their fractal dimension which can be introduced in different ways. As applied to
particle shape characterization it can be established in the following way. As a consequence
of the very irregular structure, the perimeter of the contour depends on the length of the
'stride' or 'yardstick' with which the measurements were performed. A smaller yardstick can
take into account details of the (complicated) shape which are 'invisible' with larger strides.
Therefore, the smaller the 'step' L , the larger the perimeter P  measured with it. This
dependence can be mathematically expressed as P L∝ α  where α  is the slope of the line
observed in the 'perimeter vs. yardstick' log-log plot. Just this slope is directly connected to
the fractal dimension D  as D = −1 α . From the above given explanation it is obvious that
α is negative, so D > 1. The method which is based on this idea, is called 'hand and dividers'
method. Its mathematical basic is discussed in Part 2, here some practical problems of its
application are shown.

An important remark regarding the form of these log-log plots in the framework of the
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present problem needs to be made. As it was supposed [3.1.9], 'true' fractals should have a
single straight line over the whole range of the 'yardsticks' used. Within the framework of the
present study 'true' fractals can be referred to as objects which have a shape that possesses
'self-similarity'. 'Self-similarity' means that the main 'construction elements' of the contour of
the object can be seen for the whole range of the strides. In other words, the higher the
magnification with which the object is observed, the more details can be seen, but the shape
of these details is the same for all magnifications. However, in practice, self-similarity is
seldom observed [3.1.6, 3.1.10] and usually two straight lines are seen on the log-log plots.
One of them is commonly considered as reflecting the 'textural' fractal dimension, whereas
the other one describes the 'structural' one [3.1.6]. They can be referred to as the microscopic
and macroscopic descriptions of the contour shape.

In the majority of references (e.g. [3.1.6]) the fractal dimension (especially the textural
dimension) is determined using only 5, 4, 3 and even 2(!) points on the log-log plot. Often
the difference between the two fractal dimensions (between the slopes of the two straight
lines) looks insignificant, but no statistical information is provided. Moreover, the so-called
'textural' fractals can appear only as a result of the discrete nature of the computer images.
Indeed, a circle has definitely no fractality. Fig. 3.1.2 presents the results of fractal analysis of
the digital image of a circle. It is seen that the first 3 points (corresponding to the first three
'yardsticks' used) exhibit a kind of 'statistically significant dependence'. A false 'textural'
fractal dimension is observed. False fractals are called 'fractal rabbits' following the example
of Prof. D. Avnir [3.1.6]. This artificial example of 'fractal rabbit' demonstrates that one
should be extremely careful dealing with fractals.

Fig. 3.1.2. Fractal analysis of the shape of an image of a circle. Here and in the subsequent
Figs 3.1.3, 3.1.4 and 3.1.5 the following designations are used: r  - the coefficient of
correlation for the given regression straight line, D  - fractal dimension. The yardstick is
measured in fractions of Feret's diameter.
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3.1.4. Experimental

The particles, which were used in the present study, were collected in two different sampling
campaigns. First, particles collected in Southern Siberia, Russia, during the winter of 1992
were used. From February 5th to March 4th 1992, aerosol samples were collected 3 times a
day in Karasuk, a relatively small and remote town some 400 km west of Novosibirsk. The
sampling equipment was placed some 8 km west of the town on the shore of a small lake.
The sampler was positioned approximately 2 m above the ground. The particles were
collected using 47 mm diameter, 0.4 µm pore size Nuclepore polycarbonate membrane
filters (aerosol grade). These filters were placed in plexiglass filter holders with a hat-type
cover to protect them from rain. The vacuum pump equipped with a flow meter, was
operated at a flow rate of approximately 50 l/min. In this case most of the particles were
spherically shaped fly ash particles.

Other aerosol particles were collected during a forest fire in the delta of the river
Podkamennaya Tunguska in Russia on July 6th, 1993. The sampling equipment was lifted
above the fire with the help of a helicopter. A small sampler for material dispersed by the fire
was loaded with 0.4 µm pore-sized Nuclepore filters. Aerosols were sampled during
numerous flights through the smoke column. In this way samples with irregularly shaped fly
ash particles were acquired.

The measurements were performed on a JEOL JSM-6300 electron microscope using an
electron energy of 20 keV and a beam current of ca. 1 nA and typical magnification ca
5000x. This CC SEM-EDX is equipped with a Si(Li) detector that can work in windowless
mode (PGT-IMIX). Images of some one hundred aerosol particles were acquired.

Median filtering was used to decrease the noise and increase the signal/background ration of
the images. Then the filtered 8 bit gray level images were converted into binary ones by a
manual thresholding. The bottom-to-top left-to-right procedure which is described in Part 1,
was applied in order to locate the particle in the binary image. Contours of the images of
aerosol particles were extracted from their binary images by the crack following technique
(Part 1) and stored as a list of coordinates. Fractal dimension is calculated from the contour's
coordinates using the following method. For a given yardstick size L , the perimeter of the
object is determined as follows. Starting at some arbitrary contour point ( )x ys s,  the next
point on the contour ( )x yn n,  in clockwise direction is located which has a distance d j  as
close as possible to L . This point is then used to locate the next point on the contour that
satisfies this condition. The process is repeated until the initial starting point is reached. The
perimeter is the sum of all distances d j  including the distance between the last located point
and the starting point. These calculations are performed for different yardstick sizes. Next,
the perimeter is plotted vs. the yardstick size on the log-log plot. Regression analysis is used
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to obtain the slope of the line observed on the log-log plot. Image preprocessing and fractal
dimension calculation were performed with software developed as part of this thesis.

It is interesting to note that the procedure is practically independent on the choice (of course,
in reasonable limits) of the threshold when converting a 256 gray-scale image into a binary
one. This fact is illustrated in Table 3.1.1 where fractal dimensions and their root mean
square errors for 16 different thresholds of the image of a soil dust aerosol particle which is
presented in Fig. 3.1.5, are given.

Threshold Feret's
diameter

Coefficient of
correlation

Fractal
dimension

Root mean
square error

100 285.5 -0.96 1.039 ±0.0071
105 284.0 -0.97 1.040 ±0.0062
110 282.1 -0.94 1.037 ±0.0080
115 278.4 -0.97 1.045 ±0.0071
120 278.7 -0.89 1.031 ±0.0097
125 276.7 -0.91 1.034 ±0.0094
130 276.0 -0.94 1.042 ±0.0093
135 174.3 -0.96 1.047 ±0.0074
140 273.2 -0.95 1.044 ±0.0081
145 271.4 -0.91 1.036 ±0.0094
150 267.0 -0.96 1.049 ±0.0084
160 267.2 -0.95 1.042 ±0.0058
170 264.2 -0.96 1.039 ±0.0066
180 256.6 -0.96 1.035 ±0.0059
190 249.0 -0.98 1.047 ±0.0052
200 244.4 -0.97 1.056 ±0.0085

Table 3.1.1. Values of Feret's diameters, coefficients of correlation of linear regression
straight lines, fractal dimensions and their root mean square errors for different thresholds
of the image of soil dust particle shown in Fig. 3.1.5.

3.1.5. Results and discussion

A typical example of a spherical fly ash particle, its EDX spectrum and the results of the
fractal analysis are presented in Fig. 3.1.3. The first three points on the log-log plot
demonstrate a type of 'dependence' which can be attributed to the digital nature of the image
(fractal rabbit). The coefficient of correlation seems reliable, the fractal dimension differs
statistically significantly from unity. The 2nd straight line obviously demonstrates the absence
of fractality for this spherically shaped fly ash particle. So, it can be concluded that spherically
shaped particles do not possess fractality.
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Fig. 3.1.3. a) SEM micrograph, EDX spectrum and b) results of fractal analysis of a
spherically shaped fly ash particle.

A picture of a fly ash particle with very irregular shape, its EDX spectrum and the results of
fractal analysis are given in Fig. 3.1.4. The differences in the composition as well as the
differences in shape compared to the previously studied fly ash particle are explained by the
different origin. Consequently, the results of the fractal analysis are also different. Two
different dependencies are seen in on the log-log plot, corresponding to two different fractal
dimensions. It is interesting to note that no 'fractal rabbits' are observed. The irregularly
shaped fly ash particles possess two-mode fractal dimensions with significant statistical
difference between the dimensions.

Fig. 3.1.4. a) SEM micrograph, EDX spectrum and b) results of fractal analysis of an
irregularly shaped fly ash particle.

a

a

b

b



Part 3: Applications 3.9

A micrograph of a soil dust particle, its EDX spectrum and the results of fractal analysis are
shown in Fig. 3.1.5. Comparison of Figs 3.1.3 and 3.1.5 leads to the conclusion that it is
impossible to judge about belonging of the particle to the fly ash or soil dust classes solely on
the base of the composition. At the same time, fractal analysis reveals interesting things. The
first three points (which are not shown in the graph) form a 'fractal rabbit' just as in the case
of the spherically shaped fly ash particle. At the same time, textural fractality is evident from
the log-log plot. The 'yardsticks' larger than 0.05 of Feret diameter do not possess any kind of
dependence, indicating the absence of a structural fractality.

Fig. 3.1.5. a ) SEM micrograph, EDX spectrum and b) results of fractal analysis of an
irregularly shaped soil dust particle.

Type of aerosol particle Number of particles
studied

Fractal dimension
Textural                 Structural

spherically shaped fly ash 35 no no

irregularly shaped fly ash 21 1.09±0.015 1.28±0.020

soil dust 37 1.04±0.013 no

Table 3.1.2. Fractal diameters ± standard deviations for three different types of individual
aerosol particles.

The results of studying these three types of individual aerosol particles are summarized in
Table 3.1.2. The values of the fractal dimensions of the particles of the same class vary
significantly. However, the phenomena of the absence of fractality for the spherically shaped

a b
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fly ash particles, the presence of both textural and structural fractality for the irregularly
shaped fly ash particles and of only textural fractality for soil dust particles hold for all the
particles studied.

3.1.6. Conclusions

The results of the fractal analysis of the SEM images of the two main types of fly ash
particles (spherically shaped and with irregular forms) show that they have a different fractal
behavior. Spherically shaped particles have no fractality at all, whereas irregularly shaped
particles are characterized by both textural and structural fractal dimensions. Soil dust
particles, in turn, can be characterized only by textural fractal dimension. The regularities
found can be used for the unequivocal differentiation between soil dust and fly ash particles
thus allowing correct particle source apportionment.
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3.2. Differentiation between individual
algae cells and their agglomerates

A method for the differentiation between individual algae cells and their agglomerates
according to their shape is discussed. Ideas on the functional approach to shape analysis,
discussed in Part 2, are used. The method is based on the application of complex Fourier
descriptors which are obtained from the SEM images of the cells. It is shown how such
descriptors can be obtained and used to differentiate between the individual cells and their
agglomerates as seen in SEM images. Different classification algorithms, namely, hierarchical
cluster analysis and a neural network based classifier, are used to perform a quantitative
analysis of a collected population of algae cells and agglomerates and to classify individual
objects. The obtained results show the ability of the developed method to perform the
identification of the algae cells and their agglomerates according to their shape.

3.2.1. Introduction

SEM images of an individual algae cell and a cell agglomerate are shown in Fig. 3.2.1. During
further automated analysis one is only interested in individual cells, creating the need to
differentiate automatically between them and their agglomerates.

      
Fig. 3.2.1. SEM images of an individual algae cell and a cell agglomerate.

Algae cells and especially their agglomerates show a large variety of possible shapes. Their
description is rather complicated and can be hardly standardized. It was found, for example,
that fractal approach, which was previously successfully applied for aerosol particles, is not
sensitive enough to differentiate between some individual cells and cell agglomerates. A more
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complex technique, based on complex Fourier descriptors, has been developed to perform
the differentiation between the cells and their agglomerates.

3.2.2. Complex Fourier shape description

Fourier descriptors calculated form complex Fourier series expansion were successfully used
for characterization and classification of various objects having pre-defined shapes (e.g.
aircrafts [3.2.1]). The advantage of using this approach for pre-defined shapes is the
possibility to use an iterative type of classification algorithms which searches for the
optimum match between the unknown shape and each reference shape. For the given
problem such algorithms are ineffective because there is no reference shape for both an algae
cells and cell agglomerates. So, essential modifications of this method have been done in
order to apply it for the classification of algae cells and their agglomerates.

In classical complex Fourier analysis, as described in Part 2, the shape parameters used are
the amplitudes of the Fourier spectra. They also can be used in the framework of the present
problem, however, additional preprocessing of the contours of the cells and agglomerates
should be done in order to represent them in the same way and, therefore, make an
interpretation of the obtained results more clear and convenient. It has been done as follows.

1. The contour's center of mass ( )x ym m,  is determined and new contour coordinates are
calculated: ( ) ( )( ) ( ) ( )( )x j y j x j x y j ynew new m m, ,= − − . After this translation the contour’s
center of mass has the coordinates ( )0 0, .

2. The largest distance d  from the center of mass to the contour is calculated and the new
contour coordinates are calculated as follows: ( ) ( )( ) ( ) ( )( )x j y j x j d y j dnew new, ,= . In this
way the contour's size is normalized.

3. The point ( )′ ′x y,  of a contour for which the distance d  to the center of mass is largest
is found and the contour is rotated around the center of mass as follows:

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )x j y j x j y j j x j y j jnew new, cos , sin= + + + +2 2 2 2α β α β

where ( )β j  is the angle between the vectors ( ) ( )( )x j y j,  and ( )1 0,  and α  is the angle
between the vectors ( )′ ′x y,  and ( )1 0, . After this rotation the point ( )′ ′x y,  is moved to
the position ( )1 0,  and is used as the starting point of the contour.

4. The number of the complex coefficients needed to reconstruct the contour is equal to the
number of the points of the contour. In practice such description is too large for
classification purposes. Moreover the descriptor obtained in this way has a different number
of the coefficients for different contours so they cannot be compared. To eliminate this
problem the contour should be resampled to make the total number of the contour's points
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equal for all contours and as small as possible. This resampling was done by a polygonal
approximation of the contours using a method based on the intrinsic equation of a curve as
described in Part 2. Examples of the original and the resampled contours together with
corresponding complex Fourier shape descriptors are shown in Fig. 3.2.2.
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Fig. 3.2.2. Original and resampled contours of an individual algae cell and a cell
agglomerate shown in Fig. 3.2.1 and their Fourier shape descriptors.

3.2.3. Classification algorithms

Supervised and unsupervised methods of classification were used to test the applicability of
the Fourier shape descriptor, derived as shown above, for the classification of the cells and
their agglomerates.

Unsupervised classification was performed using hierarchical cluster analysis [3.2.2] as
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implemented in the IDAS software [3.2.3]. The aim of hierarchical clustering is to find
groups of objects with similar properties. The objects (algae cells and their agglomerates) in
this particular case are represented by their Fourier descriptors and the clustering allows to
find objects having similar Fourier descriptors. The results of the hierarchical clustering are
represented as a dendrogram.

Supervised classification was performed with a three-layer feedforward neural network
trained using the stochastic back propagation training technique [3.2.4] as implemented in
NeuFrame software [3.2.5]. For the input layer having 64 neurons a linear transfer function
was used, whereas for the hidden layer having 8 neurons and the output layer having 1
neuron sigmoidal transfer functions were used. The neural network is shown in Fig. 3.2.3a.
The network was trained on a very limited training set consisting of the shape descriptors of
3 randomly chosen cell agglomerates and 6 randomly chosen individual cells. At the output
layer 0 corresponded to an agglomerate and 1 to an individual cell. A random error of 0.01
was added to the training set during the training of the neural network. The training was
performed until the error reached its lowest value of 0.05 after 612 complete passes through
the set of training data. The error graph of the training cycle is given in Fig. 3.2.3b.

|c0|
|c1|

|c63|

  
Fig. 3.2.3. a) a schematic representation of the neural network used in the present study; b)

the error graph of the training cycle of the network.

3.2.4. Experimental

Since the samples were provided as dry powders, they could not be analyzed directly by SEM
but had to be transferred and spread onto a suitable substrate for single particle analysis. Well
separated particles were produced by the liquid suspension technique [3.2.6] as follows. A
small portion of the powder is dispersed in an inert liquid, n-hexane. From this suspension
the appropriate amount, to get an optimal loading, is pipetted into a filtering funnel with
vertical sides, filled with n-hexane. This suspension is then sucked through a 25 mm
Nuclepore filter, 0.4 µm pore-size, supported by a glass filter.

a b
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Secondary electron images of algae cells and agglomerates were collected with an Integrated
Microscope and X-ray microanalyzer system (IMIX) on a JEOL JSM-6300 electron
microscope using an electron energy of 20 keV, a beam current of ca. 1 nA and typical
magnification from 1000x to 9000x. A small collection of 30 SEM images: 24 images of
individual algae sells and 6 images of cell agglomerates was acquired. Image processing was
done using a set of techniques described in Part 1. Binary images of the cells and
agglomerates were obtained by the correlation criteria based technique and the contour
following technique was employed to extract the contours of the objects. The contour
normalization and resampling was performed as above described. The shape descriptors
having 64 coefficients were obtained for each object.

3.2.5. Results and discussion

A quantitative analysis of the population of individual cells and agglomerates was performed
using hierarchical clustering. The dendrogram, representing the results of the hierarchical
clustering is shown in Fig. 3.2.4. The presence of two classes of objects is evident from this
dendrogram. One agglomerate was misclassified as belonging to the class of individual cells
due to the nearly rounded shape of this agglomerate.

5 6 2 22 10 25 15 16 13 19 20 24 21 18 7
4 3 28 17 30 23 14 9 27 12 11 8 26 29 1

2 1

Fig. 3.2.4. Dendrogram showing the results of the hierarchical clustering of algae cells and
cell agglomerates. Cell agglomerates are labeled from 1 to 6, individual cells are labeled
from 7 to 30. Agglomerate #1 is misclassified.
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Next the set of 30 shape descriptors was given to the trained network. The results of the
corresponding outputs of the network are represented graphically in Fig. 3.2.5. For all algae
cell agglomerates the network output is lower than 0.6 whereas for all individual cells the
output is larger than 0.7.
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Fig. 3.2.5. Outputs of the trained network for the cells (C) and cell agglomerates (A).

3.2.6. Conclusions

The results of the analysis of SEM images of algae cells and their agglomerates show that the
information about the shape of the objects, obtained in the form of the complex Fourier
coefficients, is sufficient to be used for the identification of the individual cells and their
agglomerates. The quantitative characterization of the entire collection of the objects can be
performed by hierarchical clustering whereas the recognition of the objects belonging to the
different classes can be performed by a trained neural network.
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3.3. Classification of tabular grain silver
halide microcrystals according to their shape

A method for the classification of individual tabular grain silver halide microcrystals
according to their shape into one of three main classes, namely, hexagon, truncated triangle
and regular triangle, is discussed. Principles of the functional approach to shape analysis,
discussed in Part 2, are used. The method is based on the application of the Fourier
descriptors of the microcrystals obtained from their SEM images. It is shown which Fourier
descriptors describe different aspects of the shape of the microcrystals. Different
classification algorithms, namely, crisp nearest prototype and nearest neighbor classifiers,
fuzzy k-nearest neighbor and nearest prototype classifiers, are tested. It is found that the
fuzzy k-nearest neighbor classifier produces the best results. Often a few microcrystals are
overlapping in the SEM images and they form irregularly shaped ensembles. A method to
extract the individual microcrystals from such ensembles is presented. The obtained results
show the ability of the developed method to perform the identification of the microcrystals
according to their shape.

3.3.1. Introduction

Tabular grain silver halide microcrystals are used as light sensitive material in modern
photographic emulsion. They are produced in a reactor vessel by the precipitation reaction of
Ag+  with Cl− , Br−  or I−  ions. Their shape, size and composition are determined by the
growth (precipitation) conditions and in turn determine the properties and the quality of the
photographic material. Under certain precipitation conditions a limited number of shapes are
produced: regular triangles, regular hexagons and truncated triangles [3.3.1]. Fig. 3.3.1 shows
SEM backscattered electron images of some typical crystals. Knowledge about the size and
shape distribution of the microcrystals is important for the optimization of the precipitation
process and for the study of the photographic properties of light sensitive films. This
information can be obtained through analysis of individual microcrystals. Therefore the
problem of classification of tabular silver halide microcrystals according to their shape is
considered.

In the literature only few publications deal with this specific problem [3.3.1-3.3.3]. The
methods described are based on the analysis of geometrical parameters of microcrystals
obtained from their SEM images. The disadvantage of this approach is that it is very difficult
to derive geometrical parameters from SEM image with sufficient accuracy. The method,
described in [3.3.2], also requires manual work in order to extract these parameters. It is,
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however, not necessary to base a classification on geometrical parameters, other suitable
descriptors can be used as well. It has been shown [3.3.4] than many artificially generated and
real shapes can be characterized by their Fourier power spectra. This idea is used in the
present work. In addition different approaches to perform the classification based on the
obtained parameters are tested, namely: the crisp and fuzzy k-nearest neighbor and the crisp
and fuzzy one-nearest prototype classification algorithms.

 
Fig. 3.3.1. Backscattered SEM images of tabular grain silver halide microcrystals.

3.3.2. Shape representation of the microcrystals

As it was mentioned above, under certain precipitation conditions a limited number of
shapes is normally produced: regular triangles, regular hexagons and truncated triangles.
Often few microcrystals are overlapping in the SEM images and they form irregularly shaped
ensembles. For such type of objects it is convenient to use the idea of representation of
figures by their contour functions introduced in Part 2. The radius-vector function ( )r ϕ  is a
suitable one. It can be easy computed from the contour's coordinates, it has a simple
interpretation and can be easily analyzed for example by Fourier analysis. Of course, the
function can be applied only to star-shaped figures, but for this particular problem only
certain ensembles of overlapping silver halide microcrystals are not star-shaped. If the star-
shape is violated, the object is immediately recognized as an ensemble of overlapping
microcrystals. Of course, not all such ensembles can be recognized in this way.

For the given problem it is convenient to perform an analysis of the radius-vector function
using its Fourier series expansion. The most important reason for this is the fact that the
microcrystals are symmetric which is reflected by the radius-vector function in terms of
periodicity. Thus, the radius-vector functions for the regular triangular and truncated
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triangular microcrystals are periodical with the period 2 3π  and for the hexagonal
microcrystals they are periodical with the period π 3 . It is shown in Part 2 that such
periodicity is well reflected by the corresponding Fourier series coefficients. Thus, for the
triangular microcrystals only the coefficients with indexes 3m  ( m ∈N ) should be different
from zero whereas for the hexagonal microcrystals only the coefficients with indexes 6m
( m ∈N ). Simulation (Fig. 3.3.2) confirms that radius-vector functions which give a good
approximation of triangular and hexagonal shapes, can be obtained by inverse Fourier
transformation using only the 3rd and 6th Fourier coefficients.

As seen, these coefficients are rather different for different shapes and they can serve as
shape parameters suitable for microcrystals description and recognition. Of course, they
cannot describe all possible shapes of microcrystals and especially not the shape of
ensembles of overlapping microcrystals, but it was observed that the 2nd Fourier coefficient is
different in the case of ensembles and it can serve as a suitable shape parameter to
distinguish between ensembles and the rest of the microcrystals. Summarizing, the shape of
the analyzed microcrystals can be adequately represented by only the three above mentioned
Fourier coefficients obtained from the Fourier expansion of the radius-vector function.
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Fig. 3.3.2. Simulated radius-vector functions (shown in polar coordinates) are obtained by
inverse Fourier transformation using 128 pairs of coefficients all equal to 0  except
a0 1= , a3 0 25= .  and a6 0 04= .  for the function shown on the left side and a0 1= ,

a3 0 005= .  and a6 0 035= .  for the function shown on the right side.

Doing shape analysis, it is important to obtain invariant shape features. It has been shown in
Part 2 which classical invariant shape parameters can be obtained from Fourier coefficients.
However, for this particular problem it is more convenient to use invariant parameters,
obtained in the following way.
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First, preprocessing of the radius-vector function eliminates the size difference between
microcrystals. It can be done dividing ( )r ϕ  by ( )max

0 2≤ ≤ϕ π
ϕr .

Second, squared harmonic amplitudes can serve as shape parameters invariant to orientation
and reflection. Examples of squared Fourier harmonic amplitudes obtained in this way are
shown in Fig. 3.3.3 for differently shaped microcrystals.
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Fig. 3.3.3. Differently shaped microcrystals and corresponding squared harmonic
amplitudes.
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The invariant shape parameters used in the present study for the classification of differently
shaped microcrystals are the squared amplitudes of the second, third and sixth harmonics
obtained by the Fourier series expansion of the radius-vector function of the microcrystals.

3.3.3. Reconstruction of the shape of
overlapping microcrystals

It has been shown that in some cases ensembles of overlapping microcrystals can be
recognized by the fact that their radius-vector function is multivalued. Later it will be shown
how ensembles, unrecognized at this stage of analysis, can be recognized during the general
classification procedure, developed in this work. To obtain statistically correct results, the
microcrystals which form these ensembles, also should be taken into account. Thereby, there
is a need to perform an extraction of overlapping microcrystals from the ensembles. The
segmentation procedure, developed in this work and described below, allows to obtain the
contours of overlapping microcrystals which then can be analyzed in the usual way starting
from the calculation of the corresponding radius-vector functions. The method is based on
the analysis of geometrical information obtained from the position of the vertexes of an
ensemble of overlapping microcrystals and is independent of the orientation, location,
reflection and size.

The main steps of the reconstruction procedure are illustrated in Fig. 3.3.4.
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Fig. 3.3.4. Reconstruction procedure: a) binary image; b) extracted contour; c) estimated
curvature at each point of the contour; d) vertexes belonging to hexagonal microcrystals are
marked in black; e) contours of reconstructed microcrystals.
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After the contour of the ensemble of overlapping microcrystals is extracted (Fig. 3.3.4b) the
curvature at every point of the contour is determined (Fig. 3.3.4c) using the so-called median
differencing technique [3.3.5]. The points of maximal curvature of the contour serve as the
vertexes of the ensemble of overlapping microcrystals.

Actually, many local extremes in the curvature plot are observed in Fig. 3.3.4c. Most of them
are caused by the digital nature of the contour and local imperfections in the crystals (noise)
and only few correspond to the real vertexes. To separate them from the noise a threshold
value of the curvature equals to 15º was experimentally found. The vertexes found in this
way are marked by boxes in Fig. 3.3.4d. Some of them are also recognized as belonging to
hexagonal microcrystals and are shown by filled boxes. Finally, Fig. 3.3.4e shows the
reconstructed contours of the hexagonal and the truncated triangular microcrystals. The
rules, used to perform such reconstruction, are explained below.

Extraction of  hexagonal and truncated triangular microcrystals

Both hexagonal and truncated triangular silver halide microcrystals have all vertexes equal to
120° . A regular hexagon has equal sides whereas a truncated triangle has sides of two
different lengths. These properties and the parallelity of the opposite sides can be used to
reconstruct partially overlapping microcrystals of this category.

The values of vertexes are determined with the cosine theorem. If the value is between
α l = °105  and α u = °135  the corresponding vertex is marked. The limiting values of α l

and α u  were determined experimentally. With such limits vertexes due to noise and vertexes
which do not belong to hexagonal or truncated triangular microcrystals are eliminated. The
ordered sequences of marked vertexes are extracted and analyzed separately in order to
reconstruct the entire shape of hexagonal or truncated triangular microcrystals, if possible. If
the vertex detection and marking procedures were correct the sequences having 6, 5, 4, 3, 2
or 1 vertexes are expected to be obtained. Of course, it is impossible to reconstruct the shape
of a hexagonal or truncated triangular microcrystal having only one vertex. In case of 2
vertexes only the shape of a regular hexagon can be reconstructed but without faith in the
true shape. The contour of regular hexagonal and truncated triangular microcrystals can be
reconstructed with sufficient accuracy having 3, 4, 5 or 6 vertexes.

With 6 vertexes, the shape of the hexagonal or truncated triangular microcrystal can be
reconstructed by sequentially connecting all of them (Fig. 3.3.5a). Two real examples of such
reconstruction are shown in Fig. 3.3.5b.
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P1
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P3 P4
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P6

          
Fig. 3.3.5. a) rule used to reconstruct the contour of a hexagonal or a truncated triangular
overlapping microcrystal when 6 vertexes are found; b) examples of overlapping
microcrystals and reconstructed contours applying this rule.

Having 5 vertexes, the contour of a hexagonal or truncated triangular microcrystal can be
reconstructed by adding the 6th vertex in the following way. Let P1 , P2 , P3 , P4  and P5  be
an ordered sequence of vertexes found to be belonging to a hexagonal or truncated triangular
microcrystal and P0  and P6  vertexes before P1  and after P5 , respectively, not belong to the
microcrystal (Fig. 3.3.6a).
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Fig. 3.3.6. a) rule used to reconstruct the contour of a hexagonal or a truncated triangular
overlapping microcrystal when 5 vertexes are found; b) examples of overlapping
microcrystals and reconstructed contours applying this rule.

The 6th vertex ′P6  of the microcrystal is at the interception of the lines P P1 0  and P P5 6 . The
coordinates of this point can be found as the solution of the system of equations

a b

a b
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representing the lines P P1 0  and P P5 6  passing through the points ( )P x y1 1 1, , ( )P x y0 0 0,  and
( )P x y5 5 5, , ( )P x y6 6 6, , respectively. Finally, having 6 vertexes the contour of the

microcrystal can be reconstructed as described above. Some real examples of such
reconstruction are shown in Fig. 3.3.6b.

If only 4 vertexes of a hexagonal or truncated triangular microcrystal are available the
following procedure can be used for the reconstruction. Let P1 , P2 , P3  and P4  be an
ordered sequence of points representing the found vertexes of a hexagonal or truncated
triangular microcrystal and P0  and P5  vertexes before and after the given sequence,
respectively (Fig. 3.3.7a).
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Fig. 3.3.7. a) rule used to reconstruct the contour of a hexagonal or a truncated triangular
overlapping microcrystal when 4 vertexes are found; b) examples of overlapping
microcrystals and reconstructed contours applying this rule.

The 5th vertex of the microcrystal ′P5  (to be found) belongs to the line P P4 5  and the length
of P P4 5′  is equal to the length of the side P P2 3 . So, its coordinates ( )′ ′x y5 5,  can be calculated
using the coordinates of the points P4  and P5  as ( )′ = + −x x l x x d5 4 5 4  and

( )′ = + −y y l y y d5 4 5 4  where l  is the length of P P2 3  and d  is the length of P P4 5 . The 6th

vertex of the microcrystal, ′P0 , belongs to the line P P1 0  and the length of P P1 0′  is also equal
to the length of the side P P2 3 . Its coordinates can be found in a similar way using the
coordinates of the points P1  and P0 . Some real examples of such reconstruction are shown
in Fig. 3.3.7b.

a b
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Having only 3 vertexes of a hexagonal or truncated triangular microcrystal, the remaining 3
can be found in the following way. Let P1 , P2  and P3  be an ordered sequence of points
representing the vertexes of a hexagonal or truncated triangular microcrystal and P0  and P4

vertexes before and after this sequence (Fig. 3.3.8a).
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Fig. 3.3.8. a) rule used to reconstruct the contour of a hexagonal or a truncated triangular
overlapping microcrystal when 3 vertexes are found; b) examples of overlapping
microcrystals and reconstructed contours applying this rule.

Two out of three remaining vertexes  ′P0  and ′P4  of the microcrystal can be found in a
similar way as described for the 4 vertexes case. The 6th vertex ′P5  can be found as the
interception of two lines parallel to lines P P1 2  and P P2 3  which cross the points ′P4  and ′P0 ,
respectively. This interception can be found in a similar way as described for the case of 5
vertexes where the line which passes the point ′P4  and is parallel to the P P1 2  also passes the
point A  with coordinates ( ) ( )( )x x x y y y1 4 2 1 4 2+ ′ − + ′ −, . Similarly, the line is passing the
point ′P0  and is parallel to the side P P2 3  also passes the point B  with coordinates

( ) ( )( )x x x y y y3 0 2 3 0 2+ ′ − + ′ −, . Some real examples of such reconstruction are shown in
Fig. 3.3.8b.

When only 2 vertexes of a hexagonal or truncated triangular microcrystal were found a
regular hexagonal microcrystal having all sides equal can be reconstructed. Let P1  and P2  be
an ordered sequence of points representing the vertexes of a microcrystal, P0  and P3  be one
vertex before the given sequence and one vertex after the given sequence (Fig. 3.3.9a). Two
vertexes ′P0  and ′P3  of the microcrystal can be found in the way similar to the case when 4
vertexes are available. The remaining 2 vertexes ′P4  and ′P5  can be defined using the
property of central symmetry of a regular hexagon.

a b
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Fig. 3.3.9. a) rule used to reconstruct the contour of a hexagonal or a truncated triangular
overlapping microcrystal when 2 vertexes are found; b) examples of overlapping
microcrystals and reconstructed contours applying this rule.

The center of symmetry C  of the hexagon has coordinates ( ) ( )( )′ + ′ ′ + ′x x y y0 3 0 32 2, . The
point ′P5  belongs to the line P C2  and the distance from the point C  to the point ′P5  is
equal to the distance from the point P2  to the point C . Thus coordinates of the point ′P5

can be found using equations similar to that used in the case when 4 vertexes are available.
The last vertex ′P4  is defined in a similar way. Of course, in many cases this reconstruction
will be wrong because there is no guaranty that the considered microcrystal is indeed a
hexagon - it can be a truncated triangular microcrystal as well. Moreover, it is not always
possible to check the correctness of the reconstruction even by visual inspection. Some real
examples of such reconstruction are shown in Fig. 3.3.9b. Clearly a reconstruction based on
only two vertexes is often subject to large errors.

Extraction of  triangular microcrystals

The contours of partially overlapping triangular microcrystals also can be extracted based on
their geometrical properties. This type of silver halide microcrystals are regular triangles with
equal sides and vertexes of 60° .

The limiting angles for the detection of triangular microcrystals were α l = °40  and
α u = °80 . All continuous ordered sequences of vertexes previously selected as belonging to
triangular microcrystals are extracted and analyzed separately in order to reconstruct the
shapes. If the vertex detection and marking procedure is done correctly sequences of
vertexes having 3, 2 or 1 points are expected to be obtained.

When a sequence has only 1 vertex obviously it is impossible to reconstruct the

a b
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corresponding triangular microcrystal correctly. If a sequence contains 3 points the contour
of the microcrystal can be reconstructed by sequentially connecting its vertexes. When only
two vertexes are available the 3rd vertex of the triangular microcrystal can be determined as
follows. Let P1  and P2  represent two real vertexes of a triangular microcrystal and P0  and
P3  two vertexes which were detected in the ensemble: P0  is located before vertex P1 , P3  is
located after vertex P2  (see Fig. 3.3.10a). The coordinates of the 3rd vertex ′P3 , belonging to
the microcrystal, is found as the coordinates of the point of the intersection of the lines P P1 0

and P P2 3  in the way similar to that described above for the case of a hexagonal microcrystal
having 5 vertexes. Some real examples of such reconstruction are shown in Fig. 3.3.10b.

P1

P2

P3

P0 P′3

          
Fig. 3.3.10. a) rule used to reconstruct the contour of a triangular overlapping microcrystal
when 2 vertexes are found; b) examples of overlapping microcrystals and reconstructed
contours applying this rule.

3.3.4. Classification of microcrystals via
their shape descriptors

The microcrystal's shape is represented by a point in the 3D space of the 2nd, 3rd and 6th

squared harmonic amplitudes of the corresponding Fourier coefficients obtained by
expanding the radius-vector functions into Fourier series. Thus, the problem of recognition
of individual silver halide microcrystals is converted to the problem of multidimensional
pattern classification. Different modifications of the nearest neighbor classification algorithm
[3.3.6] were tested in order to find the best solution to this problem.

a b
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Nearest neighbor classification algorithms

Let z z zc1 2, , ...,  be a set of c  prototype vectors representing the c  classes, for example the
centers of the classes in which each member is represented by a point in the 3D space of the
2nd, 3rd and 6th squared harmonic amplitudes. The crisp one-nearest prototype classifier assigns an
input sample vector y  to the class of its nearest neighbor prototype.

Let x x xq1 2, , ...,  be a set of vectors representing the q  labeled samples from the c  classes.
The crisp nearest neighbor classifier assigns an input sample vector y  to the class of its nearest
neighbor. This idea can be extended to the k  nearest neighbors. But, when more than one
neighbor is considered, the possibility that there will be a tie among classes with a maximum
number of neighbors in the group of k  nearest neighbors exists. The usual way of handling
this problem is to assign the sample vector to the class, of those classes that tied, for which
the sum of distances from the sample to each neighbor in the class is minimal.

The idea of one-nearest prototype classifier can be extended to the fuzzy one-nearest prototype
classifier. Such classifier assigns a membership of a sample vector y  to the i th  class
( i c= 1 2, , ..., ) rather than assigning vector y  to a particular class i . The basis of the
algorithm is to assign a membership ( )u yi  as a function of the vector's distance from all
prototypes:
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The fuzzy k-nearest neighbor classifier assigns a membership value of a sample vector y  in the
class i  as a function of the vector's distance from its k  nearest neighbors. Let ( )u yi  be the
assigned membership of the vector y  (to be computed), and uij  is the membership in the
i th  class of the j th  vector ( j q= 1 2, , ..., ) of the labeled sample set, then uij  can be
computed in the following way based on the k-nearest neighbor rule. The ′k  (not k  of the
classifier)-nearest neighbors to each j th  sample (say, a sample from a class t ) are found and
their membership in each i th  class is assigned according to the following equation:
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where the value ni  is the number of the neighbors found which belong to the i th  class.
Finally, ( )u yi  is computed according to the following equation:
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where { }′x j  ( j k= 1 2, , ..., ) is the set of k  nearest neighbors of the given vector y . The

parameter m  determines how heavily the distance is weighted when calculation each
neighbor’s contribution to the membership value. As m  increases, the neighbors are more
evenly weighted, and their relative distances from the point being classified have less effect.

Labeled samples and prototypes

The k-nearest neighbor classification algorithms require sets of labeled samples (or
prototypes) which represent different classes. This set was generated by analyzing the data
obtained from a subset of collected microcrystals. Minimal and maximal values of the
squared amplitudes of the 2nd, 3rd and 6th harmonics were determined for each class of
microcrystals (Table 3.3.1). Combining these values, the 8 prototypes for each class of
microcrystals were obtained. One additional prototype for each class of microcrystals was
obtained by using the average values of the minimal and maximal squared amplitudes of the
2nd, 3rd and 6th harmonics.

Squared amplitudes of the
microcrystals 2nd harmonic 3rd harmonic 6th harmonic

min max average min max average min max average

triangles ~0 0.0004 0.0002 0.0069 0.0081 0.0075 0.0004 0.0010 0.0007

truncated
triangles

~0 0.0004 0.0002 0.0008 0.0067 0.0037 0.0000 0.0004 0.0002

hexagons ~0 0.0002 0.0001 ~0 0.0004 0.0002 0.0003 0.0006 0.0005

overlapping
microcrystals

0.0044 0.0293 0.0168 0.0001 0.0045 0.0023 ~0 0.0005 0.0003

Table 3.3.1. Minimal, maximal and average values of the 2nd, 3rd and 6th squared harmonic
amplitudes obtained from a subset of the experimental data set. The set of labeled samples
(prototypes) for the crisp and fuzzy 4-nearest neighbor classifiers was obtained by
combining only minimal and maximal values. Average values of the 2nd, 3rd and 6th squared
harmonic amplitudes were used as set of prototypes for the crisp and fuzzy one-nearest
prototype classifiers.

Thus each class of differently shaped microcrystals is represented by 9 points in a 3D space
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formed by the squared amplitudes of the 2nd, 3rd and 6th harmonics. Such artificially
generated labeled samples allowed to divide the 3D space into 'class subspaces' which are
bounded by the parallelepipeds formed by the first 8 points for each class (Fig. 3.3.11).

For the crisp k-nearest neighbor and the fuzzy k-nearest neighbor classifiers all 9 points of
each class were used as the set of labeled samples. For the crisp one-nearest prototype and
the fuzzy one-nearest prototype classifiers only the central points, i.e. the average values of
the minimal and maximal squared amplitudes, were used as the set of labeled prototypes.
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Fig. 3.3.11. A 3D space formed by the squared amplitudes of the 2nd (X axes), 3rd (Y axes)
and 6th (Z axes) harmonics. The corners of the parallelepipeds correspond to the 8
prototypes for each class of microcrystals (C1 - triangular microcrystals, C2 - truncated
triangular microcrystals, C3 - hexagonal microcrystals, C4 - ensembles of overlapping
microcrystals). The 3D space is divided by these 4 parallelepipeds into 4 separated 'class
subspaces'.

3.3.5. Experimental

Backscattered electron images of tabular silver halide microcrystals were acquired with an
Integrated MIcroscope and X-ray microanalyzer (IMIX) system on a JEOL JSM-6300
electron microscope using an electron energy of 20 keV, a beam current of ca. 1 nA and
typical magnification ca. 3000x. A liquid nitrogen cooling stage was used to decrease the
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deformations of the sample because the photographic silver halide microcrystals are sensitive
to irradiation. The operation temperature at the electron microscope is as low as possible i.e.
-186º C. At this temperature no reaction was visible in the scanning electron images. More
details about the samples used in this work, the sample preparation and image acquisition
techniques can be found in [3.3.1].

Acquired images were binarized using the correlation criteria based technique described in
Part 1. Next, the area (the number of pixels belonging to an object) of all microcrystals was
calculated and only microcrystals with the area larger than a predefined value (300 pixels)
were selected for analysis. Finally, contours of selected microcrystals were extracted from
their binary images by the crack following technique described in Part 1 and stored as a list of
coordinates. The following was done in order to obtain invariant shape parameters. The
center of mass of a microcrystal was used as the origin to obtain the radius-vector function.
It was calculated as the sum of the corresponding contour’s coordinates x  and y  divided by
the total number of points on the contour. The 360 radii, measured from the center of mass
to the contour points with step 1º were obtained for the microcrystal and normalized to the
largest radius in order to obtain the size invariant shape parameters. If some radial vectors are
multivalued (i.e. the shape is re-entrant) the corresponding object is considered as belonging
to the class of overlapping microcrystals. Otherwise, the radius-vector function is expanded
into Fourier series. The microcrystal shape parameters used for representation and
classification are the 2nd, 3rd and 6th squared harmonic amplitudes of the corresponding
Fourier coefficients. All calculations were performed with software developed as part of this
thesis.

3.3.6. Results and discussion

Results of the classification of differently shaped microcrystals by the crisp 4-nearest
neighbor and the crisp one-nearest prototype classifiers are summarized in Table 3.3.2. Some
examples of results of classification by these algorithms are shown in Table 3.3.3. The
parameter k = 4  was found to be the most suitable one after thorough analysis of all cases
for k  equals 1 to 9. It was observed that in most cases the first 4 nearest neighbors of any
point corresponding to the microcrystal shape belong to one class.

The crisp 4-nearest-neighbor classifier gave good results. At the same time the use of the
crisp one-nearest prototype classifier results in a large number of miss-classifications,
especially of truncated triangles and overlapping microcrystals. These results are expected
because triangles and hexagons form small, compact clusters in the 3D space of the squared
amplitudes of the 2nd, 3rd and 6th harmonics whereas truncated triangles and especially
ensembles of overlapping microcrystals show a large variety of shapes and therefore form
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large clusters.

correctly classified by the
type of microcrystals total number of

microcrystals
crisp 4-nearest-

neighbour classifier
crisp one-nearest

prototype classifier

triangles 12 100% 100%
truncated triangles 25 100% 32%

hexagons 16 100% 100%
ensembles of
overlapping
microcrystals

12 92% 33%

Table 3.3.2. Summary of classification of 65 microcrystals by the crisp 4-nearest neighbor
and one-nearest prototype classifiers.

Although the crisp 4-nearest neighbor classifier gives good results, the advantage of using
fuzzy k-nearest neighbor and fuzzy k-nearest prototype classifiers can be understood by
examining a microcrystal which has a truncated trapezoidal shape. The crisp classifier will
classify it to one of the 4 classes even if the truncated trapezoid does not belong to them. At
the same time the fuzzy 4-nearest neighbor classifier (m = 3 ) gives values of the membership
for the truncated trapezoid in every class. These values however are not high enough for
making the decision about its belonging to any class. Moreover the fuzzy classifier allows us
to do more precise classification of triangles. The triangular microcrystals are defined as
microcrystals whose length of the short edges is smaller than 10% of that of the long one
[3.3.1]. According to human observation it is not always obvious to classify some
microcrystals to the class of triangles or truncated triangles. The fuzzy 4-nearest neighbor
classifier gives in these cases values of membership in the class of triangles lower than 0.9.
This fact can be used for recognizing such intermediate microcrystals.

The fuzzy one-nearest prototype classifier has the same disadvantage as crisp one-nearest
prototype classifier - it often misclassifies truncated triangles and overlapping microcrystals.

For the experimental data set considered, the fuzzy 4-nearest neighbor classifier gave highest
membership values of all overlapping microcrystals in their own class and only for one
overlapping microcrystal it gave a high value of membership for the class of hexagonal
microcrystals (0.81). Since this class is represented by a compact small cluster it is possible to
specify the lowest value of membership of belonging to this class as 0.9. Actually, the lowest
values of memberships of belonging for the remaining classes can be specified as well. For
triangles and hexagons this value is 0.9. For truncated triangles and overlapping microcrystals
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this value is 0.7. A microcrystal is unclassified if it has memberships values in every class
lower than the specified lowest values. One additional rule is used to classify a microcrystal as
an (intermediate) truncated triangle: it must have a membership value in the class of triangles
between 0.7 and 0.9 and a membership value in class of truncated triangles larger than 0.1.
Some examples of results of classification by different algorithms are shown in Table 3.3.3.

Differently
Results of classification

by crisp

Membership values, obtained
by fuzzy 4-

nearest neighbor classifier

Membership values, obtained
by fuzzy one-nearest
prototype classifier Finally

shaped
microcrystals

4-nearest
neighbor
classifier

1-nearest
prototype
classifier

C1 C2 C3 C4 C1 C2 C3 C4
classified as

triangle triangle 1 0 0 0 0.88 0.07 0.04 0.1 triangle

triangle triangle 0.88 0.12 0 0 0.8 0.12 0.06 0.02
(inter-

mediate)
truncated
triangle

truncated
triangle

truncated
triangle

0.12 0.88 0 0 0.34 0.46 0.15 0.05 truncated
triangle

truncated
triangle

hexagon 0 0.88 0.12 0 0.12 0.31 0.53 0.04 truncated
triangle

hexagon hexagon 0 0 1 0 0.03 0.06 0.89 0.01 hexagon

ensemble of
overlapping

micro-
crystals

ensemble of
overlapping

micro-
crystal

0 0.22 0 0.78 0.21 0.3 0.34 0.16 ensemble of
overlap-

ping micro-
crystals

ensemble of
overlapping

micro-
crystals

hexagon 0 0.42 0.03 0.54 0.17 0.29 0.44 0.1 unknown

Table. 3.3.3. Comparison of results of classification by different algorithms. Column 'Finally
classified as' obtained from classification by fuzzy 4-nearest neighbor classifier using the
additional rules for the classification of truncated triangles, described in the text. The same
abbreviations as in Fig. 3.3.11 were used.

The accurate classification of the shape of tabular grain silver halide microcrystals is possible
only with the fuzzy 4-nearest neighbor classifier. The three other classification algorithms,
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examined in the present work, produce misclassifications. An example of results of the
classification by the proposed algorithm is shown in Fig. 3.3.12.

1

2

3a

3b

4

5

6

7

8

9

truncated triangle

hexagon

hexagon

truncated triangle

truncated triangle

unclassified

truncated triangle

triangle

triangle

hexagon

10a

10b

11

12

13

14

15

16

17-19

truncated triangle

truncated triangle

microcrystal is too small

truncated triangle

hexagon

truncated triangle

hexagon

triangle

too small microcrystal

Fig. 3.3.12. A typical backscattered electron image (after preprocessing) of silver halide
microcrystals. Labeled microcrystals are classified according to their shape as show in the
table.

3.3.7. Conclusions

A method for the classification of tabular grain silver halide microcrystals according to their
shape is described. Shape descriptors, obtained from the Fourier power spectra, are used to
describe the shape of microcrystals. Fourier power spectra are obtained from the radius-
vector functions. The classification of the shapes is based on nearest neighborhood
algorithms. Results of the classification by 4 different algorithms are compared and the fuzzy
4-nearest neighbor classifier was found to be the most appropriate one. In addition, a
reconstruction procedure of the contours of microcrystals from ensembles of overlapping
microcrystals is developed. The method can be used for the control of the precipitation
process and for the study of the photographic properties of light sensitive materials.
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3.4. On fractal dimension calculation
In section 3.1 shown how fractal concept was successfully applied to the analysis of the
shape of aerosol particles. The method was found to be robust to the selection of the
threshold value used to discriminate the particles from the background. To some extend the
change of the threshold value can be interpreted as a making a slice of the particle at
different height. However, a few problems related to the calculation of the fractal dimension
by the 'hand and dividers' method were encountered the answers to which could not be
found in the literature. One of them is the need to perform a visual inspection of the log-log
plots in order to find the best straight line intervals to be fitted. Another is the presents of
random errors in the approximated perimeter as well as in the yardstick size used to
approximate the perimeter. The aim of this part is to examine these problems in more details
and to show what kind of effects can be observed.

3.4.1. 'Hand and dividers' method: theory

There are a variety of methods to estimate the fractal dimension developed over the past
decade [3.4.1]. However, the oldest, classical 'hand and dividers' method is one of the most
frequently used in practice. 'Hand and dividers' method (also called 'structured walk
technique' or 'yardstick method') is a precise method for manual determination of fractal
dimension of planar curves on paper. It uses the following mathematical model. Consider the
boundary B  of a figure. An arbitrary point S  on the boundary is selected and the point S1 ,
located from S  on the distance r1 , is found traveling along the boundary in one direction.
The process is repeated starting from S1  until the entire boundary is scanned and the
number ( )N r1  of intervals of length r1  is counted. It is clear that the discs corresponding to
the circles having origins in S1 , S2 , ... and radii r1 , cover B  completely. Thus ( )N r1  can be
interpreted as an approximation of the disc numbers ( )M Br  in the last but one equation
(Part 2 section 2.2.1) from which the fractal dimension can be obtained. The procedure is
repeated for widths r1 , r2 , ... with r r1 2> >... . Then approximations ( )l ri  for the length of
B  are obtained as ( ) ( )l r r N ri i i= . If D  is the fractal dimension of the boundary B , then
the following equation can be written:

( )
− = →D

M B
rr
rlim sup

log
log0 .

For small r  this corresponds to

( )
− =D

M B
r
rlog

log
 or ( )M B rr

D= − .
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Finally this can be rewritten as ( )l r cr D= −1  where c  is a scaling factor, or as
( ) ( )log log logl r c D r= + −1  which has the form of a regression line y ax b= +  from

which an estimate of D  can be obtained by calculating the slope a .

The 'hand and dividers' method has an interesting history. It was originally developed by
Richardson in his attempt to answer the question “How long is the coastline of Great
Britain” [3.4.2]. The answer to this question essentially seems to depend on the yardstick size
used to measure the length of the coastline. Richardson observed that if the measured
coastline was plotted against the size of the yardstick, λ , using logarithmic axes (Richardson
plot), the result was a straight line. Furthermore, the slope of the line was different for
different boundaries. More irregular coastlines, as judged by human observers, always result
in a line with a higher slope. The slope is negative, since the largest value for the coastline
length is obtained with the shortest yardstick. The magnitude of the slope of the line is
between zero and one. Mandelbrot showed [3.4.3] that fractal dimension of the coastline is
just this magnitude plus 1, the topological dimension of a line.

3.4.2. 'Hand and dividers' method: practice

Descriptions of many computer implementations of 'hand and dividers' method can be
found in the literature [3.4.1, 3.4.4-3.13]. The general procedure is the following. The contour
of an object is obtained using a boundary following technique, resulting in a set of contour
points ( ){ }x yi i, . In image analysis there are several definitions of boundary; the so-called
inner 8-boundary is often used in fractal analysis [3.4.13]. Having the boundary of the
projection of the object the corresponding Richardson plot is obtained by performing
perimeter estimation for different yardstick sizes. The length of the yardstick λ  usually varies
between 0.001 and 0.5 times the maximum Feret diameter. The corresponding Richardson
plot is formed by plotting the perimeter versus the average yardstick size using logarithmic axes.
From this plot the fractal dimension is obtained by the least-squares line fitting.

For a given yardstick size λ  the perimeter is determined as follows. Starting at some
arbitrary contour point ( )x ys s,  the next point on the contour ( )x yn n,  in clockwise
direction is located which has a distance

( ) ( )d x x y yj s n s n= − + −2 2

as close as possible to λ . This point is then used to locate the next point on the contour that
satisfies this condition. The process is repeated until the initial starting point is reached. The
perimeter is the sum of all distances d j  including the distance between the last located point
and the starting point. The average yardstick size is the sum of all distances d j  (excluding
the distance between the last located point and the starting point) divided by the number of
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points found.

The above described algorithm is referred to in the literature as the 'hybrid' method [3.4.4]
with only one important difference. In the original version of the algorithm the average
yardstick size is defined as the perimeter divided by the number of steps, thus taking into
account the distance between the last located point and the starting point which can be
significantly different from the initial yardstick size especially for large λ . In the algorithm
described here this problem is avoided.

3.4.3. Problems associated with the 'hand
and dividers' method

A problem was observed using the 'hand and dividers' method which, actually, has been
pointed out before [3.4.5], but has never been examined. One can notice that slightly
different values of the perimeter and average yardstick size are obtained for the same initial
yardstick size starting from different contour points ( )x ys s, . Up to our knowledge, it has
never been shown what kind of effects are observed when the calculations are performed
starting from different points on the contour. It is not clear what kind of influence this can
have on the resulting Richardson plot and fractal dimension. One can expect that the
resulting fractal dimension is biased or has a random error within some range for different
starting points. In order to analyze the problem a set of measurements was performed using
images of artificial fractals shown in Fig. 3.4.1. Such objects have known fractal dimensions
and are often used for test purposes.

Curve Image Known fractal
dimension

Number of pixels
in the contour

Maximal Feret's
diameter

The smoother Koch
curve

1.1291 844 149

The triadic Koch
curve after third

iteration

1.262 1086 144

Fig. 3.4.1. The smoother and triadic Koch curves.
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There are two main factors having strong influence on the resulting average yardstick size
and the perimeter: the geometry of the figure and the type of digital grid used to acquire the
image. First, let us consider the influence of the type of the digital grid. Only the octagonal
grid is used in the present study. It is evident that for the minimal possible initial yardstick
size equal to 1, the corresponding average yardstick size is always 1 due to the structure of
the computer-generated inner 8-boundary on the octagonal grid. For the initial yardstick size
equals 2 different nearest approximations of the yardstick length 2 on the octagonal grid can
be obtained (Fig. 3.4.2a): 2 and 5 . Consequently different average values of the initial
yardstick size can appear depending on the number of occurrences of the approximations 2
and 5  of the initial yardstick size 2. The average yardstick size will be larger than 2 and less
than 5 .

( )x ys s,

( )x yn n,

2

( )x ys s,

( )x yn n,

5

( )x ys s,

( )x yn n, 5

( )x ys s,

( )x yn n,

( )x ys s,

( )x yn n,

( )x ys s,

( )x yn n,

3

2 2

10

( )x ys s,

( )x yn n,

10

Fig. 3.4.2. Possible approximations of the distances 2 ( a) and 3 (b) on an octagonal grid.

a

b
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The same is expected in the case when the initial yardstick size equals 3, now there are 3
possible best approximations on the octagonal grid: 2 2 , 3 and 10  (Fig. 3.4.2b).

In order to show the influence of the geometry of the object on the resulting average
yardstick size and the perimeter additional measurements were performed using images of
artificial fractals (Fig. 3.4.1) with initial yardstick sizes of 2, 5, 14 and 40. First, the variations
of the average value of the yardstick size for different starting points were examined. The
graphs of all possible average values obtained for yardstick sizes 2, 5, 14, and 40 for the
triadic Koch curve and the smoother Koch curve are shown in Figs 3.4.3 and 3.4.4,
respectively. Three facts are evident from these graphs:

1) A certain periodicity is observed which is expected because of the iterative nature of the
curves resulting in their similarity at different intervals and scales;

2) Variations of the average yardstick size increase with increasing initial yardstick size;

3) For different objects different variations, even for the same yardstick size, are observed.
This is a consequence of the different geometry of the objects.

Probability histograms, obtained for average yardstick sizes 2 and 40, are shown in Fig. 3.4.5.
The probability of normally distributed random numbers with the same means and standard
deviations as the corresponding average yardstick size distributions for both analyzed objects
are shown in the graph as the solid curves. Some statistical parameters describing the
distributions are given in Tables 3.4.1 and 3.4.2. The following conclusions can be drawn
analyzing these graphs. For small yardstick sizes the geometry of the analyzed object plays a
very important role. For example, for the case of the smoother Koch curve the average
yardstick size (for initial yardstick size 2) is in the range from 2.127 to 2.132 whereas for the
triadic Koch curve it is in the range between 2.114 and 2.117. These intervals are even non-
overlapping. Such essential difference can be explained only by the difference in the
geometry of the objects. At the same time, for the larger values of the initial yardstick size
(for example, 40) the difference in the frequency histograms is not so large. Approximation
intervals, obtained for different objects with the same initial yardstick size 40, are almost 80%
overlapping. Moreover, experiments show that the frequency histogram better follows the
shape of the frequency histogram of normally distributed random numbers with the same
mean and standard deviation, as the initial yardstick size increases.

The graphs of all possible values of perimeters obtained for yardstick sizes 2, 5, 14, and 40
for the triadic Koch curve and the smoother Koch curve are shown in Figs 3.4.6 and 3.4.7.
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Fig. 3.4.3. All possible average yardstick sizes obtained for initial yardstick sizes of 2, 5, 14
and 40 for the triadic Koch curve.
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Fig. 3.4.4. All possible average yardstick sizes obtained for initial yardstick sizes of 2, 5, 14
and 40 for the smoother Koch curve.
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Fig. 3.4.5. Probability histograms for the average yardstick sizes, obtained for the initial
yardstick sizes 2 (a) and 40 (b) for the triadic (black bars) and smoother (white bars) Koch
curves. The probability histograms of normally distributed random numbers having the
same means and standard deviations as the corresponding average yardstick sizes, are
shown as solid lines.
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Fig. 3.4.6. All possible perimeters obtained for initial yardstick sizes of 2, 5, 14 and 40 for
the triadic Koch curve.
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Fig. 3.4.7. All possible perimeters obtained for initial yardstick sizes of 2, 5, 14 and 40 for
the smoother Koch curve.
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As seen from these plots, slightly different values of the fractal dimension are obtained when
perimeter estimations are performed starting from different starting points. The difference
between these values is not significant. However, it is difficult to prove that there are no
situations in which this difference is significant. The problem becomes even more
complicated when an object having multifractal properties is considered.

3.4.4. Analysis of the Richardson plot

The least-square line fitting in the Richardson plot requires visual inspection of the plot in
order to determine the best straight line interval. The following method of an automated
analysis of the Richardson plot is proposed. Once the Richardson plot has been constructed
we have n  points ( )x yi i,  where xi  represents the different yardstick lengths, yi  the
values of corresponding estimated perimeters and n  the number of data points in the
Richardson plot. The statement that there exists a straight line which fits a certain subset of
the points implies that there exists a certain inherent structure. The question is then how to
reveal this structure. One possible way is to apply a multivariate analysis technique such as
cluster analysis (CA), specially intended to solve such types of problems. However, in order
to directly apply CA to this specific case, the problem should be reformulated as follows. Let
us, instead of all n  points in the plot, consider all possible straight lines each of which fits
any ordered subset of m  points from left to right in the plot (m k k n= +, , ...,1 where k
is certain lower limit). Each of these lines is characterized by its slope a  and intercept b .
The best fit values of a  and b  in the least squares sense are calculated as [3.4.1]:
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From the point of view of determining the fractal dimension only the slope a  is of interest.
However, the computation of the expected error σ  in the slope involves the calculation of
the intercepts. The error is calculated as
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For the purpose of this application it is logical to consider only those straight lines which
have slopes in the interval -1 and 0. Furthermore we restrict ourselves to lines with a slope
errors σ  not exceeding a certain threshold. This results finally in a one-dimensional set
containing all possible slopes. The problem of finding the underlying structure through
clustering can now be solved via constructing the frequency histogram. The maxima in the
histogram show the most populated cluster(s) which correspond to the most appropriate
fractal dimension(s).

The method was tested for different artificially generated and real objects. As a first example
the triadic Koch island with theoretical fractal dimension log / log . ...4 3 12618=  was used.
The Richardson plot was constructed (Fig. 3.4.11b) by the 'hand and dividers' method as
explained above. The frequency histogram of all possible slopes (here and in the following
examples k = 4 , σ ≤ 0 01. ) is shown in Fig. 3.4.11c. The maximum of the histogram is
reached at a = 0 27.  which corresponds to the fractal dimension of 1.27 which is in a good
agreement with the theoretical value.

The book by Mandelbrot [3.4.3] contains many examples of artificial islands having various
fractal dimensions. Some of them were analyzed by the present method and the following
results were obtained. For the smoother Koch island (plate 46 from [3.4.3]) having
theoretical fractal dimension log / log . ...3 7 11291=  the value 1.14 was obtained. A
quadric Koch island (plate 49) was constructed with theoretical fractal dimension 1.5. As the
result of analysis by the present method the value of 1.48 was obtained. Finally, a circle (Fig.
3.4.12a), which is known to be a non-fractal object in Euclidean geometry, was also analyzed.
The frequency histogram (Fig. 3.4.12c), obtained from corresponding Richardson plot (Fig.
3.4.12b), shows a fractal dimension of 1.01 which actually means the absence of fractality.

An agglomerate (Fig. 3.4.13a) similar to one of the oldest well known objects with
multifractal properties, the Medalia's carbonblack profile [3.4.14], was generated and analyzed
in order to check the applicability of the method for characterizing complex multifractal
objects. The frequency histogram (Fig. 3.4.13c) shows a global maximum, which reveals a
fractal dimension of 1.17. More thorough analysis of the frequency histogram discloses two
local maxima, which correspond to fractal dimensions of 1.08 and 1.13. The visual inspection
of the Richardson plot (Fig. 3.4.13b) shows the two distinct lines (as predicted by our
method) which correspond to fractal dimensions of 1.08 (textural) and 1.17 (structural). The
value of 1.13 is an average of the textural and structural fractals, measured over the interval
λ = 0 01.  to λ = 0 20.  (Fig. 3.4.13b). A similar situation was encountered by Flook [3.4.15]
and is discussed in Kaye’s book [3.4.6] using the Medalia's carbonblack profile as an example.
Kaye shows the presence of both textural (1.10) and structural (1.32) fractal dimensions and
discusses his early studies [3.4.16] of the carbonblack profile where an overall fractal
dimension of 1.18 was obtained as an averaged. The results of our analysis of the original
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Medalia's carbonblack profile as it appears in [3.4.14] are quite similar to that of Kaye:
structural fractal dimension of 1.32; textural fractal dimension of 1.13 and average fractal
dimension of 1.19. The results of the discussion are summarized in Table 3.4.5 together with
some other examples.
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Fig. 3.4.11. a) the triadic Koch island after 5 iterations with theoretical fractal dimension
log / log . ...4 3 12618= ; b) corresponding Richardson plot (here and in the next figures
yardstick and perimeter are shown as fraction of the maximum Feret diameter); c) the
frequency histogram, obtained from the Richardson plot shown ( k = 4 , σ ≤ 0 01. ). Its
maximum corresponds to fractal dimension of 1.27.
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Fig. 3.4.12. a) a non-fractal object (a circle); b) corresponding Richardson plot; c) the
frequency histogram, obtained from the Richardson plot shown.

All results shown above have been obtained with k = 4  and σ ≤ 0 01. . It is interesting to
inspect the changes of a frequency histogram vs. k  and σ . In order to do this two biological
examples were used. Figs 3.4.14a and 3.4.15a show scanning electron microscopy images of
individual algae cell and cells agglomerate, respectively. Richardson plots are shown in Figs
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3.4.14b and 3.4.15b. One straight line on the plot (Fig. 3.4.14b) can be observed
corresponding to a fractal dimension of 1.04. The Richardson plot for the agglomerate of
algae cells (Fig. 3.4.15b) shows two straight lines corresponding to textural 1.13 and
structural 1.39 fractal dimensions.

Yardstick

Pe
ri

m
et

er

1

10

100

0.001 0.01 0.1 1

| Slope |

Fr
eq

ue
nc

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.
06

0.
12

0.
18

0.
24 0.
3

0.
36

0.
42

0.
48

0.
54 0.
6

0.
66

0.
72

0.
78

0.
84 0.
9

0.
96

Fig. 3.4.13. a) a synthetic agglomerate profile created from the set of circles (similar to the
carbonblack profile); b) corresponding Richardson plot; c) the frequency histogram.
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The frequency histograms were obtained for different values of k  (Figs 3.4.14c and 3.4.15c)
and σ  (Figs 3.4.14d and 3.4.15d). Both parameters were chosen in intervals from possibly
smallest to reasonably large numerical values. There is no difference in the position of the
global maxima for different values of k  (Figs 3.4.14c and 3.4.15c). With increasing k  some
local maxima however can be lost (Fig. 3.4.15c). Thus, numerical value of k  should be
chosen relatively small in order to obtain a histogram with sufficient detail to reveal the fine
structure in the fractal object. Differences of the histograms for different σ  are evident
especially in case of multifractal object (Fig. 3.4.15d). For relatively small values, the
maximum of the histogram corresponds to the textural fractal dimension. Starting from
certain larger values the maximum corresponds to the structural one (Fig. 3.4.15d). So, if a
relatively small value of σ  is chosen the textural fractal dimension can be revealed by the
global maximum of a frequency histogram. In the other case, the global maximum
corresponds to the structural fractal dimension. Usually there is no essential influence of a
chosen value of σ  on the location of the maximum of the histogram in the cases when only
a single line can be observed on Richardson plot.

Single fractals Known fractal dimension Fractal dimension,
obtained by the present

method

circle (Fig. 3.4.12a) 1 (nonfractal) 1.01 ± 0.01

smoother Koch island [3.4.3] 1.1291... 1.14 ± 0.01

triadic Koch island (Fig. 3.4.11a) 1.2618... 1.27 ± 0.01

quadric Koch island [3.4.3] 1.5 1.48 ± 0.01

coast of Great Britain [3.4.17] ~1.3 1.32 ± 0.01

algae cell (Fig. 3.4.14a) - 1.04 ± 0.01

Multifractals textural structural textural structural

Medalia’s carbonblack profile
[3.4.14]

1.10 1.32 1.13 ± 0.01 1.32 ± 0.01

artificially generated carbonblack
profile (Fig. 3.4.13a)

- - 1.08 ± 0.01 1.17 ± 0.01

algae cells agglomerate (Fig.
3.4.15a)

- - 1.13 ±
0.007

1.39 ± 0.01

Table 3.4.5. Known fractal dimensions and value obtained by the present method for some
artificially generated and real objects. Here 'known' means theoretical or from literature.
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Fig. 3.4.14. a) an individual algae cell; b) corresponding Richardson plot; c) the frequency
histogram for parameters k = 2 , k = 30  and k = 90  (σ = 0 01. ); d) the frequency
histogram for parameters σ = 0 001. , σ = 0 01.  and σ = 01.  ( k = 2 ).
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Fig. 4.2.2.15. a) an agglomerate of algae cells; b) corresponding Richardson plot; c) the
frequency histogram for parameters k = 2 , k = 30  and k = 90  (σ = 0 01. ); d) the
frequency histogram for parameters σ = 0 007. , σ = 0 01.  and σ = 01.  ( k = 8 ).
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For all studied examples of theoretical and real objects we always found a relation between
fractal dimension of an object and a maximum of a corresponding frequency histogram.
Depending on the chosen value of σ , a textural or structural fractal dimension can be
revealed by the global maximum of the histogram. For a relatively large σ  the global
maximum corresponds to a structural fractal dimension, whereas for smaller σ  it reveals a
textural fractal dimension. For single fractal objects the maximum of the histogram doesn’t
change essentially. In order to reveal the fine structure of the histogram a relatively small
value of k  should be selected. For most examples discussed above we chose k  equal to 4
and σ  equal to 0.01 for determining the structural fractal dimension.
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3.5. Study of quasi-fractal many-particle
systems and percolation networks

Submicron colloidal Ag  particles and nano-sized filaments forming a statistical percolation
network during 'in situ' development of double structure tabular microcrystals of AgBr(I)
emulsions were studied by zero-loss electron spectroscopic imaging (ZLESI). Image analysis
showed that random quasi-fractal clusters are formed in the colloid. ZLESI was applied to
characterize the morphology and defect structure of aggregated particles and filaments. To
study the cluster structure and its relation to the physical properties, fractal analysis including
estimations of cluster fractal dimensions and of density autocorrelation functions was
performed. Mechanisms of fractal aggregation based on known models of diffusion limited
aggregation, cluster-cluster aggregation and percolation are discussed.

3.5.1. Introduction

Nowadays coagulated fractal and quasi-fractal structures are an area of active research [3.5.1-
3.5.2]. They result from a variety of different processes: film deposition on a solid surface,
adsorption of molecules by porous matter, solidification of colloids, crystallization of
ultradisperse powders, various biophysical processes, etc. As a rule, fractal properties of
objects having porous, ramified, rough or sparse and tenuous structures are usually
associated with nonequilibrium growth. The unique physical and chemical properties,
different from those of both gases and condensed media make fractal clusters of great
fundamental interest. Moreover, fractal properties can be used for the characterization of
many-particle-systems and microanalysis of surfaces and various disperse substances as well.
Volume and surface plasmon excitations, in particular, are determined both by properties of
the individual particles and by collective effects due to interaction among the particles
densely packed in aggregates. To understand how fractal geometry affects electronic
properties of aggregated matter, electron-optical and optical methods can be applied [3.5.3].
Here some data on formation of quasi-fractal clusters in aggregated Ag  colloids and of
percolation filament networks during development of composite tabular microcrystals of
Ag(Br, I)  emulsions studied by zero-loss electron spectroscopic imaging (ZLESI) and
image analysis are presented.
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3.5.2. Experimental

Samples and sample preparation and image acquisition

A suspension of colloidal Ag  particles was obtained by reduction of a diluted aqueous
solution of AgNO3  in the presence of 0.1% polyvinyl alcohol (PVA). In another
experiments statistical networks of Ag  filaments were produced by a 2-minute 'in situ'
treatment, with the Kodak D-19 developer, of double structure tabular microcrystals; the
latter had a size of 7-10 µm and consisted of AgBr  cores and Ag(Br, I)  shells containing 5-
6 mol. % of AgI . Samples for observations were prepared by deposition of particles and
developed crystals on TEM grids covered with a thin carbon film. A ZEISS EM 902 electron
microscope with an integrated prism-mirror-prism energy filter operated at 80 kV
accelerating voltage was used for ZLESI measurements. The exit energy-selecting slit in the
image mode was 10 eV. Digital images of particles were acquired via a SIT TV camera by a
KONTRON IBAS 2000 image analysis system.

Image processing and analysis

Quantitative image processing was done to perform fractal analysis of particle aggregates as
well as to estimate the parameters of the size distribution of the particles. Selected fields in
the latter case contained 500 distinguishable particles.

In order to separate particles from their background, the correlation criterion based
technique described in Part 1 has been applied. The crack following algorithm, which is also
described in Part 1, has been used for the contour extraction. Estimation of fractal
dimensions has been performed using the following techniques:

1)  the 'hybrid' method (discussed in the previous part) searching the relation P L D~ 1−

between the perimeter P of the cluster's projection on an image plane and a 'yardstick'
size L  used for the measurement of the perimeter;

2)  the box counting method [3.5.4] based on the relation N S D~ −  between the number of
boxes N  covering the cluster projection contour on the image plane and their side S ;

3)  the covering set method [3.5.4] using the relation N S D~ −  between the number of
boxes N  needed to covered the cluster projection and their side S ;

4)  the Forrest-Witten technique [3.5.5] based on the relation N S D~  between the number
of primary particles N  within a square of side S  plotted on the projection plane of the
cluster;

5)  the density autocorrelation analysis [3.5.5] was done to evaluate the relation ( )C r r D d~ − ,
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between the average density ( )C r  of occupied points in the projection plane of the
cluster at a distance r . Here d  is dimension of space (d = 2 ).

Testing of some techniques on a Sierpinsky carpet with the fractal dimension 1.89 gave the
following results: 1.80±0.19 (the covering set method); 1.89±0.13 (the Forrest-Witten
technique); 1.91±0.11 (the pair correlation function analysis). Analysis of the triadic Koch
curve with theoretical fractal dimension 1.26 gives the following results: 1) 1.25±0.07 (the
'hybrid' method); 2) 1.26±0.15 (the box counting method).

3.5.3. Results and discussions

Ag colloids

TEM micrographs of colloidal Ag  particles are shown in Fig. 3.5.1. A zero-loss filtered
image (Fig. 3.5.1.b) demonstrated a higher contrast and better resolution than the
corresponding unfiltered image (Fig. 3.5.1a) because the blurring and the chromatic
aberration caused by inelastically scattered electrons in the specimen is avoided. This allowed
to observe more clearly grain boundaries and crystalline defects, e.g. twins and stacking
faults.

 
Fig. 3.5.1. TEM images of colloidal Ag  particles stabilized with a protective polymer: a)

CTEM image; b) ZLESI image.

Fig. 3.5.2 shows a low magnification view of a cluster formed by colloidal particles. The inset

a b
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presents a discrete ring zero-loss spectroscopic selected-area electron diffraction pattern of
aggregated particles pointing to a face centered cubic polycrystalline structure. Zero-loss
filtering in this case removed the inelastically scattered electrons, which contribute to the
background, and increased the contrast of the diffraction patterns. The particle size
distribution could satisfactorily be fitted to a log-normal curve with a mean size (equivalent
circle diameter) of 42.7±2.2 nm.

Fig. 3.5.2. ZLESI image of a fractal cluster formed by the particles. Left inset shows a zero-
loss spectroscopic selected-area electron diffraction pattern.

Usually the particles in such colloids are prevented from aggregation by repulsive forces
between double layers at the particle surfaces. These forces overcome the Van der Waals
attraction. Addition of ions to the colloidal system affects the space charge of the particle
surfaces and induces aggregation. Initially this leads to coagulation aggregates. Neighborhood
particles in the aggregates are separated by thin ion shells at their surface. By aging of the
colloidal system the neighborhood particles coalesce partially and build a common grain
boundary. The pictures in Fig. 3.5.1 demonstrate the topological arrangement of a statistical
network consisting of random aggregates and irregular chains of coagulated particles. The
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aggregate shown in Fig. 3.5.2 apparently consists of three parts formed at earlier stages by
cluster-particle aggregation. The actual aggregation cannot adequately be described by a
model of cluster-particle (CPA) or cluster-cluster (CCA) aggregation only. Real processes
may involve these two mechanisms occurring simultaneously or sequentially and/or more
complicated aggregation mechanisms. The average density of the aggregate, estimated by the
autocorrelation density technique, decreased with increasing radius of gyration in accordance
with the CCA model which preferentially contributes to the final stage.

An essential feature of the studied colloids is a power law relationship M R D~ β  between
the mass M  (or the number of particles) and the radius of gyration R  of the aggregate (Fig.
3.5.3). Here Dβ  is the mass fractal dimension characterizing a given population of
aggregates. It is significant that at the early stages of aggregation clusters forming by the CPA
mechanism contain a small number (100-300) of specks and therefore cannot be considered
as fractals in the strict sense of the word [3.5.6]. In this case the parameter Dβ  describes the
distribution of the substance in the system. However, the high values of the correlation
coefficient of linear regression (0.98) indicate that even in this range the fractal approach is
appropriate for describing disordered aggregated structures.
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Fig. 3.5.3. Mass dependence of the clusters vs. their size.

Analysis of a population of 39 clusters gave the value Dβ = ±181 011. . . This result can be
compared with the value 181 0 05. .±  obtained for computer simulated diffusion limited
aggregation (DLA) growth of fractal clusters along random linear trajectories [3.5.7]. The
model developed for describing the 3D cluster aggregation was shown to be in agreement

Dβ = 1.81 ± 0.11
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with results obtained by the Forrest-Witten technique. Since we consider preferentially 2D
aggregated structures, the cluster mass determined from the projection will be approximately
equivalent to the total mass of the object in three dimensions. Also, the radius of gyration,
obtained from the projection, will be essentially the same value determined from the 3D
structure. Thus the projection demonstrates the same behavior as the corresponding 3D
cluster. This may explain why our data are in good agreement with results for the simulated
3D cluster aggregation. The values of the fractal dimension obtained by the Forest-Witten
technique, which characterize the internal automodeling of separate aggregates were in the
range 1.86-1.91.

Most of quasi-fractal clusters analyzed by the 'hybrid' method exhibited contour fractal
dimension values in the range from 1.20 to 1.35. The values obtained by the box counting
methods were 1.30-1.45. This reflects an irregular shape of the outer border cluster
structures. The interpretation of these data, which, in principle, can be used for the
classification of the structures studied, requires further analysis including also an evaluation
of boundary effects.

Ag filament networks

Fig. 3.5.4a shows a ZLESI image of the central part of a double structure tabular
microcrystal after a 2-minute 'in situ' treatment with the Kodak developer D-19.
Development of crystals was usually accompanied with an intensive etching and resulted in
the formation of a network of Ag  filaments in the core region [3.5.8]. Here again zero-loss
filtering allowed to improve the contrast and resolution of filament fine features, i.e. grain
boundaries, twins and stacking faults. The development process in the shell regions occurred
more slowly and etching was not so intensive because of the lower solubility of AgBr I1-x x  as
compared to pure AgBr . In the central part of the crystal, Ag  filaments and particles
formed branched web-like statistical networks. Generation of disordered aggregated
structures by silver filaments and particles is obviously related to the stochastic nature of the
development process in specific conditions, i.e., the local excess of the active volume
developer and the high overpotential of the anode step of the reaction, the occurrence of
both direct chemical and solution physical development mechanisms, and the presence of a
protective polymer layer on the crystal surfaces [3.5.9]. Moreover, the obtained results
suggest that the networks arise in some type of critical process, where such features as self-
similarity, scaling and universality are displayed, and which, in principle, may be suitably
described by percolation [3.5.10]. The power-law behavior of the silver mass M  (the
number of occupied sites) vs. the square size S  shown in Fig. 3.5.4b points out that the
networks belong to random fractals. The fractal dimension determined from the slope of the
curve was 195 011. .± .
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Fig. 3.5.4. a) ZLESI micrograph of a network of Ag  filaments formed in the course of a 2-
minute development of a double structure AgBr(I)  tabular microcrystal; b) the number of
occupied sites plotted vs. the square size plotted on the image of the network; c) computer
simulation of growth of a percolation network (probability of the occupation of a lattice site
p = 0 2. ); d) computer simulation (final stage, formation of the branched network,
p = 0 7. ). The line in graph (b) corresponds to the experimental image (a), points obtained

by the treatment of the simulated image (d) are shown by triangles.

Numerical computations of the network growth within a simplified invasion percolation
model [3.5.11] shown in Figs 3.5.4c and 3.5.4d describe, respectively, an initial stage and a
final stage of the aggregation process with a hexagonal lattice. At the final stage a simulated
extended network obviously exhibits the morphology of filaments similar to that on the
ZLESI image in Fig. 3.5.4a.

Dα = 1.95 ± 0.11

a b

c d
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The value of fractal dimension for the simulated network shown in Fig. 3.5.4d is 194 011. .±
in satisfactory agreement with the experimental value (Fig. 3.5.4b). It was also found that in
both cases the autocorrelation function ( )C r  demonstrates a similar behavior. Based on the
obtained results, one can conclude that this model can be applied to describe the filament
network growth in the course of the photographic development process.

3.5.4. Conclusions

This study shows that ZLESI and digital image analysis are useful for the characterization of
coagulated Ag  colloids and of chemically generated statistical networks of Ag  filaments
formed during 'in situ' development of composite Ag(Br, I)  tabular microcrystals. The data
presented point out that aggregated Ag  particles of 42.7±2.2 nm in size deposited onto an
inert carbon support form random quasi-fractal clusters. The mass fractal dimension of the
clusters was estimated as 1.81±0.11 in line with data on simulation of the fractal cluster
growth according to the DLA model. Box fractal dimension of a random network of nano-
sized Ag  filaments formed in the course of development of double structure tabular
microcrystals of Ag(Br, I)  emulsions was determined as 1.95±0.11 in satisfactory agreement
with numerical computations of the network growth within the invasion percolation model.
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