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IMAGE PROCESSING TECHNIQUES

This part deals with the formation, acquisition and processing of images. Its contents can be
best represented as a diagram where the evolution of the considered information (images)
and the processes involved are shown.
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1.1. Basics of image formation
Since only the images obtained by a scanning electron microscope (SEM) and a transmission
electron microscope (TEM) were used in this work and since both techniques are well-
established, only a brief introduction is given on the principles and instrumentation of SEM
and TEM aiming to show what kind of information is expressed through the images
obtained by these techniques.

An image is the optical representation of an object illuminated by a radiation source. The
following elements are present in an image formation process: an object, a radiation source
(visible light, X-rays, electrons, etc.) and an image formation system. The mathematical
model which describes the image formation, depends on the radiation source, on the physics
of the radiation-object interaction and on the acquisition system used. A beam of high energy
electrons is the radiation source in SEM and TEM. When it strikes a sample a number of
phenomena occur simultaneously [1.1.1-1.1.10]. Fig. 1.1.1a, which is taken form [1.1.4],
shows different signals generated by the interaction of an electron beam with a solid. The
electron interaction volume and the volume from which the different signals are originating
are shown in Fig. 1.1.1b which is taken from [1.1.3].

 

Fig. 1.1.1. a) signals generated by the interaction of an electron beam with a solid; b)

electron interaction volume and volume from which the different signals are originating.

When electrons enter a material, they interact with the constituent atoms via electrostatic
(Coulomb) forces. Most of the primary electrons dissipate their energy as heat but the
electron-specimen interaction also yields different types of electrons and electromagnetic
waves as a result of elastic or inelastic scattering events. After elastic scattering, which occurs
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mainly by interaction of the primary electrons with the electrostatic field of the nucleus,
primary electrons change their direction with low energy losses. Inelastic scattering is caused
by the interactions of the incident electrons with the nucleus and with the inner- or outer-
shell electrons. High-energy electrons can penetrate deep into the atoms and eject inner-shall
electrons forming thereby an excited atom. Outer-shell electrons can also undergo single-
electron excitation. Due to the ejection of the inner-shell electron a vacancy is formed in the
inner electron shell which is filled by an electron from one of the neighboring shells. Owing
to this electron transfer, some energy which is equivalent to the energy difference of the two
shells, is dissipated. This energy difference is released either as an X-ray or as an Auger
electron. The energy of the X-rays and the Auger electrons are specific for the element which
produces them.

1.1.1. Image formation in SEM

An image in SEM is obtained by scanning the fine focused electron beam over the surface of
the specimen and the simultaneous registration of the signals from the detectors. At each
point of the specimen the beam dwells for some fixed time during which the electrons of the
beam interact with the specimen. As it was said, a number of phenomena occur as the result
of the elastic and inelastic scattering of the primary electrons. If in the case of elastic
scattering the scattering angle exceeds 90°, the electron is said to be backscattered and may
emerge from the specimen close to the point where it entered. The efficiency of elastic
scatter events increases with the atomic number of the specimen. A region containing
elements with a high atomic number will produce more backscattered electrons than a region
with a low atomic number. Therefore chemical phases can be recognized in backscattered
electron images based on atomic number differences. Since the backscattered electrons are
coming from deeper in the specimen (Fig. 1.1.1b), the interaction volume is much larger than
the beam diameter and, as a consequence, the resolution in the backscattered image is at
most of the order of 200 nm. If in the case of inelastic scattering the final stage of the
transitions of the electrons lies above the vacuum level of the solid and if the excited atomic
electron has enough energy to reach the surface of the specimen, it may be emitted as a
secondary electron. The secondary electrons can only escape from a very shallow depth (Fig.
1.1.1b). The intensity of the secondary electron emission is little influenced by the
composition of the specimen but is highly dependent on the orientation of the sample
surface with the respect to the detector. This makes that they provide important topographical
information about the surface of the specimen. The low exit depth allows the resolution of the
order of 5-20 nm to be reached.

Backscattered electrons are detected by a set of 2 solid state detectors, mounted close above
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the specimen. Their construction is shown in Fig. 1.1.2a which is taken from [1.1.2]. The
electron beam passes through the hole and the backscattered electrons hit the detector and
produce a current. The signals which are obtained by both detectors, can be combined into
two types of images, topographical and compositional. The topographical image originates
from the difference in the incident and backscattered angle and can be obtained by
subtracting the signals from both detectors. The compositional image relies on the atomic
number dependence of the backscattered electrons and can be obtained by adding the
detector signals.

 

Fig. 1.1.2. a) a circular solid state detector which is used to detect backscattered electrons;
b) scintillator-photomultiplier combination which is used for recording secondary electrons.

The secondary electrons are detected by a scintillator-photomultiplier combination which is
known as the Everhart-Thornley detector. Its construction is shown in Fig. 1.1.2b which is
taken form [1.1.2]. The secondary electrons are collected by a grid. The electrons which pass
through the collector grid, are accelerated to the scintillator and basically they generate
photons interacting with the scintillator. A Faraday cage is placed round the scintillator in
order to avoid deflection of the primary beam. The generated photons are converted into an
electrical signal.

As it was said, an image in SEM is obtained by scanning the fine focused electron beam over
the surface of the specimen and the simultaneous registration of the signal from a detector.
Switching between different detectors allows to observe the backscattered or secondary
electron images. The signal which was formed in the detector, is suitably amplified and used
to modulate the intensity of a cathode ray tube (CRT) which is scanned in synchronism with
the electron beam and, thus, a SEM image is formed. At the exit of the head amplifier the
video signal is normally proportional to the number of electrons recorded. This signal can be
used not only to modulate the intensity of a CRT, but also can be converted to a digital form
and the image can be stored digitally. This is done by an analogue-to-digital converter [1.1.2,
1.1.11] which is usually connected to a computer and, therefore, the digitized image can be
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directly transferred to the computer. A digital image is represented as a two-dimensional data
array where each data point is called a picture element or pixel. A digitized SEM image
consists of pixels where the intensity (range of gray) of each pixel is proportional to the
number of the backscattered (in a backscattered electron image) or secondary (in a secondary
electron image) electrons, emitted from the corresponding point on the surface of a
specimen. Such images are called gray level images and usually only 256 levels of gray are used
where 0 corresponds to black and 255 corresponds to white. All image processing, described
in this work, is done on images of this type.

1.1.2. Image formation in TEM

If a specimen is sufficiently thin and the energy of the incident electrons is high enough,
most of the incident electrons will pass through the specimen with little or no energy loss
and can be 'visualized' on a fluorescent screen or registered on a photographic plate located
below the specimen. The TEM image obtained in this way is called a conventional electron
micrograph and is, basically, the result of the scattering, diffraction and absorption of the
electrons as they pass through the specimen. Different regions of the specimen scatter the
electrons by various degrees where the extent of the scattering depends on the local
elemental composition and the local thickness and density of the specimen. The TEM is used
to investigate ultra-thin samples, typically less then 200 nm. The image resolution depends on
the sample thickness and the aberrations of the lenses and is typically of the order of 1-2 nm.

In a conventional transmission electron microscope (CTEM) the image formation process is
based primarily on the contrast arising form the elimination of the elastically scattered
electrons. Inelastically scattered electrons are indistinguishable from the unscattered electrons
and are also imaged into the final image plane. Modern transmission electron microscopes
are equipped with the imaging electron energy spectrometer (filter of the prism/mirror/
prism type) which allows to work in the electron spectroscopic imaging (ESI) mode so that
the electrons of selected energy loss can be visualized. The magnetic field of the prism
disperses the electron beam according to the energy of the electrons and the electrons which
did not loss energy, are deflected over 90°, reflected by the electrostatic field of the mirror
and deflected again by the magnetic field into the optical axis of the microscope. Electrons
which have suffered energy losses are slower, so the magnetic field of the prism deflects
them at larger angles. After the spectrometer they move outside the optical axis and are
caught by the spectrometer slit. Only the unscattered electrons (electrons which suffered no
energy loss) reach the final image plane and such imaging is called zero-loss electron spectroscopic
imaging (ZLESI). Zero-loss filtering not only increases the contrast, also a better comparison
with simulated images is possible. To image with electrons which have lost an energy ∆E
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the accelerating voltage E  of the primary electron beam is increased to E E+ ∆  and the
beam electrons which have lost energy ∆E  in the specimen, enter the spectrometer with an
energy E . They stay on the optical axis of the microscope and pass through the
spectrometer slit into the final image plate. Thus, by varying the accelerating voltage,
electrons of selected energy loss can be used for imaging. The choice between zero-loss
filtering and the use of an energy-loss window depends on the specimen and the information
wanted.
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1.2. Image processing software
Different commercial general purpose and specialized image processing/analysis software
packages are available on the market. For many practical applications commercially available
software is the best choice. However, for some of the applications, described in Part 3, no
commercial programs are available. Therefore additional software was developed.

1.2.1. KS400

One of commercial image processing software packages used for some of the applications is
the KONTRON Imaging System KS400 [1.2.1]. An example of a typical screen of the system is
shown in Fig. 1.2.1.

Fig. 1.2.1. Commercial software KONTRON Imaging System KS400.

Been very powerful and convenient in use, the KS400 software has one essential
disadvantage: it does not allow to have direct access form a macro to single pixels in the
image. In practice this means that the functionality of the software is limited by the set of
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standard functions. In principle, the problem can be overcome by using Free Programming
KONTRON Software Development Kit which is supplied with KS400. However, the usage of
this kit is basically equivalent to writing our own applications except of the implementation
of some elements of the user interface. Therefore, image processing software was written
instead of writing additional components for KS400.

1.2.2. Image processing/analysis software developed

Software was written implementing new techniques of image processing and analysis. Some
applications were written for the SPARK Station 20 running the UNIX Solaris 2.4 operation
system. Other programs were developed for IBM-compatible PC running the Microsoft Windows
3.x/95 operation systems.

The software written for UNIX consists of a set of low-level image processing/analysis
functions including

• Sun raster file image (RAS) reading/writing;
• automatic and manual image thresholding;
• gray-scale and binary morphology;
• fractal analysis of contours using 'hand and dividers' method;
• fractal analysis of percolation networks;
• image correlation.

Some of these functions were later incorporated into a PGT-IMIX software used to control
a JEOL JSM-6300 scanning electron microscope. All C codes, given in this Part, are taken
from this package. They were compiled by the cc 3.0.1 compiler for the UNIX Solaris 2.4
operation system on a SPARK Station 20.

The software written for Windows operation system includes a number of specialized
programs. One of them is Image Processing System a typical view of which is shown in Fig. 1.2.2.
The software is written in C++ using MFC and developed with Visual C/C++ v. 1.5 for the
Windows 3.1 operation system. The system works with images stored using Windows bitmap
image file format (BMP) and allows to perform

• different image manipulations: rotating, flipping, resizing, cropping;
• histogram modifications: brightness/contract adjustment, autoscaling and equalization;
• image filtering: median, mean, shrink and swell filtering, matrix filtering;
• binarization: manual, autothreshold using clustering and correlation criteria;
• binary morphology: erosion, dilation, thinning, watershed segmentation.
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Fig. 1.2.2. Multi-purpose image processing and analysis software Image Processing
System.

The program is able to show different kind of information about the image such as its gray
level histogram, horizontal and vertical line profiles, etc. It also includes some advanced
image analysis functions such as Fourier analysis and correlation analysis. All the functions
are available from pull down menus as is standard in a Windows application.

Another program, a typical view of which is shown in Fig. 1.2.3, is called ImPro32. It is
written in C++ using MFC and developed with Visual C/C++ v. 4.0 for the Windows 95
operation system. The program uses a 'command line' user interface. It allows to record
different single commands as a script which than can be run in the 'execute script' mode.
Among simple image manipulation and processing functions the program has two advanced
functions which allow to extract objects and their contours from binary images and to
perform a segmentation of overlapping objects of known shape.

To perform a fractal analysis of microscopic objects a program called Fractals was developed.
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Its typical view is shown in Fig. 1.2.4. The software was written in C++ using MFC and
developed with Visual C/C++ v. 1.5 for the Windows 3.1 operation system. The program
has two different fractal analysis methods for contours: 'hybrid' and 'box counting', and the
'covering set' method of fractal analysis of the interior part of objects. It has a typical
Windows-style user interface with pull down menu.

Fig. 1.2.3. Specialized image processing and analysis software ImPro32.

An essential feature of this program is the ability to perform a visual inspection of
Richardson plot (more details about this subject are given in Parts 2 and 3) in a very
convenient way. The program allows to choose straight line intervals just by pointing with
the mouse to appropriate points on the Richardson plot. After this the program recalculates
the corresponding slope(s) of the chosen line(s), the corresponding fractal dimension(s) and
the uncertainty.

For some of our applications it was necessary to simulate different objects having knows
fractal properties. To perform such modeling a program called Simul, was developed. Its
typical view is shown in Fig. 1.2.5. The software was written in C++ using MFC and
developed with Visual C/C++ v. 2.0 for the Windows 3.1 operation system. Different
simulation models are implemented including

• two models of simulation for percolation networks;
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• simulation of diffusion-limited particle-cluster aggregation;
• simulation of diffusion-limited deposition.

The parameters for each simulation model can be set within the corresponding dialog boxes.
With this software it is possible to visualize different steps of the simulation, to apply
additional rules to the simulation models, etc.

Fig. 1.2.4. Specialized image analysis software Fractals.

1.2.3. Image processing with MathCAD and MatLab.

The MatLab [1.2.2] and MathCAD [1.2.3] environments are ideally suited to image
processing. In particular, MatLab's matrix-oriented language is well suited for manipulating
images, which are nothing more than visual renderings of matrices. The result is a very easy
and economical way of expressing image processing operations. In addition both programs
have Image Processing Toolboxes which provide a powerful and flexible environment for
image processing and analysis. Both programs were used to perform different calculations on
images, for example, MathCAD was used to generate all examples of contour functions
discussed in Part 2.
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Fig. 1.2.5. Specialized fractal simulation software Simul.

There are several advantages of using MathCAD and MatLab for image analysis. One of
them is the ability to have direct access to any portion of available information what in
general is not possible with many commercial image analysis systems. With these programs it
is possible to stop any calculations at any time, change a portion of the calculation procedure
and then restart the calculations from the point which was affected by the changes without
recompiling the code as it usually happens with programming in C, or even restarting the
calculations from the beginning. Such ability is very useful for research and the development
of new techniques. However, the main disadvantage of these programs is the relatively slow
computational speed compared to compiled C code. It is caused by the need of the code to
be translated first into a machine code and only then to be executed. Therefore, complex
image processing applications can be better implemented using high level programming
languages such as C or C++, rather than using software like MatLab or MathCAD.
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1.3. Image storage and manipulation
An important issue in image processing is the image storage problem. Many image file
formats were developed over the past decades aiming to represent images in a compact and
economical way with the ability to work with such representation on different platforms.
Since the bitmap file format is a standard image file format for all Microsoft Windows
operation systems (Windows 3.x/95/NT) and the raster file format is a standard image file
format for all Sun's versions of UNIX operation system and computers running these two
operation systems were used, only these two image file formats are used and described here.
Since the Windows bitmap file format is well documented and examples of different
applications which are able to read and write images using this file format, can be found in
the literature [1.3.1-1.3.5], only a brief description is given here. The Sun raster file format is
not that well documented. Therefore it is shown in some details how images, presented in
this format, can be retrieved, stored and manipulated. All the examples of different image
processing functions given in this Part are based this image file format.

1.3.1. Windows bitmap file format

Windows bitmap files are stored in a device-independent bitmap (DIB) format. The term
'device independent' means that the bitmap specifies pixel color in a form independent of the
method used by a display to represent color. Each bitmap file contains a bitmap-file header, a
bitmap-information header, a color table, and an array of bytes that defines the bitmap bits.
The file has the following form:

BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;
RGBQUAD aColors[];
BYTE aBitmapBits[];

The bitmap-file header contains information about the type, size, and layout of a device-
independent bitmap file. The header is defined as a BITMAPFILEHEADER structure:

typedef struct tagBITMAPFILEHEADER { /* bmfh */
UINT bfType; /* Specifies the type of file. This member must be BM.  */
DWORD bfSize; /* Specifies the size of the file, in bytes. */
UINT bfReserved1; /* Reserved; must be set to zero. */
UINT bfReserved2; /* Reserved; must be set to zero. */
DWORD bfOffBits; /* Specifies the byte offset from the BITMAPFILEHEADER

    structure to the actual bitmap data in the file. */
} BITMAPFILEHEADER;
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The bitmap-information header, defined as a BITMAPINFOHEADER structure, specifies
the dimensions, compression type, and color format for the bitmap:

typedef struct tagBITMAPINFOHEADER { /* bmih */
DWORD biSize; /* Specifies the number of bytes required by the 

    BITMAPINFOHEADER structure. */
LONG biWidth; /* Specifies the width of the bitmap, in pixels. */
LONG biHeight; /* Specifies the height of the bitmap, in pixels. */
WORD biPlanes; /* Specifies the number of planes for the target 

    device. This member must be set to 1. */
WORD biBitCount; /* Specifies the number of bits per pixel. This value 

    must be 1, 4, 8, or 24. */
DWORD biCompression; /* Specifies the type of compression for a comp-

    ressed bitmap. It can be one of the following 
    values: BI_RGB, BI_RLE8 and BI_RLE4*/

DWORD biSizeImage; /* Specifies the size, in bytes, of the image. */
LONG biXPelsPerMeter; /* Specifies the horizontal resolution, in pixels per 

    meter, of the target device for the bitmap. */
LONG biYPelsPerMeter; /* Specifies the vertical resolution… */
DWORD biClrUsed; /* Specifies the number of color indexes in the color 

    table actually used by the bitmap. */
DWORD biClrImportant; /* Specifies the number of color indexes that are 

    considered important for displaying the bitmap. */
} BITMAPINFOHEADER;

Here biCompression Specifies the type of compression for a compressed bitmap. It can be one
of the following values:

• BI_RGB: specifies that the bitmap is not compressed.

• BI_RLE8: specifies a run-length encoded format for bitmaps with 8 bits per pixel.

• BI_RLE4: specifies a run-length encoded format for bitmaps with 4 bits per pixel.

The biSizeImage specifies the size, in bytes, of the image. It is valid to set this member to zero
if the bitmap is in the BI_RGB format. The biXPelsPerMeter and biYPelsPerMeter specifie the
horizontal and vertical resolution, in pixels per meter, of the target device for the bitmap. An
application can use these values to select a bitmap from a resource group that best matches
the characteristics of the current device. The biClrUsed specifies the number of color indexes
in the color table actually used by the bitmap. If this value is zero, the bitmap uses the
maximum number of colors corresponding to the value of the biBitCount member. If the
biClrUsed member is nonzero, it specifies the actual number of colors that the graphics
engine or device driver will access if the biBitCount member is less than 24. If biBitCount is set
to 24, biClrUsed specifies the size of the reference color table used to optimize performance
of Windows color palettes. If the bitmap is a packed bitmap the biClrUsed member must be
set to zero or to the actual size of the color table. The biClrImportant specifies the number of
color indexes that are considered important for displaying the bitmap. If this value is zero, all
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colors are important.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of
bits that define each pixel and the maximum number of colors in the bitmap. These
members can have any of the following values:

• 1: bitmap is monochrome and the color table contains two entries. Each bit in the
bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of
the first entry in the color table. If the bit is set, the pixel has the color of the second
entry in the table.

• 4: bitmap has a maximum of 16 colors. Each pixel in the bitmap is represented by a 4-bit
index into the color table. For example, if the first byte in the bitmap is 0x1F, the byte
represents two pixels. The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

• 8: bitmap has a maximum of 256 colors. Each pixel in the bitmap is represented by a 1-
byte index into the color table. For example, if the first byte in the bitmap is 0x1F, the
first pixel has the color of the thirty-second table entry.

• 24: bitmap has a maximum of 224 colors. Each 3-byte sequence in the bitmap array
represents the relative intensities of red, green, and blue, respectively, for a pixel.

The color table, defined as an array of RGBQUAD structures, contains as many elements as
there are colors in the bitmap:

typedef struct tagRGBQUAD { /* rgbq */
BYTE rgbBlue; /* Specifies the intensity of blue in the color. */
BYTE rgbGreen; /* Specifies the intensity of green in the color. */
BYTE rgbRed; /* Specifies the intensity of red in the color. */
BYTE rgbReserved; /* Not used; must be set to zero. */

} RGBQUAD;

The color table is not present for bitmaps with 24 color bits because each pixel is represented
by 24-bit red-green-blue (RGB) values in the actual bitmap data array. The colors in the table
should appear in order of importance. This helps a display driver render a bitmap on a device
that cannot display as many colors as there are in the bitmap.

The bitmap bits, immediately following the color table, consist of an array of BYTE values
representing consecutive rows, or 'scan lines', of the bitmap. Each scan line consists of
consecutive bytes representing the pixels in the scan line, in left-to-right order. The number
of bytes representing a scan line depends on the color format and the width, in pixels, of the
bitmap. If necessary, a scan line must be zero-padded to end on a 32-bit boundary. However,
segment boundaries can appear anywhere in the bitmap. The scan lines in the bitmap are
stored from bottom to up. This means that the first byte in the array represents the pixels in
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the lower-left corner of the bitmap and the last byte represents the pixels in the upper-right
corner.

1.3.2. Sun raster file format

A raster file is composed of three parts: first, a header containing 8 integers; second, a
(possibly empty) set of colormap values; and third, the pixel image, stored a line at a time, in
increasing y  order. It can be defined by the following structure:

struct rasterfile {
struct rasterheader header;
/* color map follows for ras_maplength bytes, followed by image */
unsigned char *ras_red;
unsigned char *ras_green;
unsigned char *ras_blue;
/* image data */
unsigned char *ras_matrix;

};

The image is layered out in the file in the same way as in memory. Each line of the image is
rounded up to the nearest 16 bits. The header is defined by the following structure:

struct rasterheader {
int ras_magic; /* magic number */
int ras_width; /* width (pixels) of image */
int ras_height; /* height (pixels) of image */
int ras_depth; /* depth (1, 8, or 24 bits) of pixel */
int ras_length; /* length (bytes) of image */
int ras_type; /* type of file; see RT_* below */
int ras_maptype; /* type of colormap; see RMT_* below */
int ras_maplength; /* length (bytes) of following map */

};

The ras_magic field always contains the following constant:

 #define RAS_MAGIC 0x59a66a95

The ras_width, ras_height, and ras_depth fields contain the image's width and height in pixels,
and its depth in bits per pixel, respectively. The depth is either 1 or 8, corresponding to
standard frame buffer depths. The ras_length field contains the length in bytes of the image
data. For an unencoded image, this number is computable from the ras_width, ras_height, and
ras_depth fields, but for an encoded image it must be explicitly stored in order to be available
without decoding the image itself. The length of the header and of the (possibly empty)
color-map values are not included in the value of the ras_length field; it is only the image data
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length.

The following ras_type's are supported:

/* Sun supported ras_type's */
#define RT_OLD 0 /* Raw pixrect image in 68000 byte order */
#define RT_STANDARD 1 /* Raw pixrect image in 68000 byte order */
#define RT_BYTE_ENCODED 2 /* Run-length compression of bytes */
#define RT_FORMAT_RGB 3 /* XRGB or RGB instead of XBGR or BGR */
#define RT_FORMAT_TIFF 4 /* tiff <-> standard raster file */
#define RT_FORMAT_IFF 5 /* iff (TAAC format) <-> standard raster file */
#define RT_EXPERIMENTAL 0xffff /* Reserved for testing */

For historical reasons, files of type RT_OLD will usually have a 0 in the ras_length field, and
software expecting to encounter such files should be prepared to compute the actual image
data length if needed.

The ras_maptype and ras_maplength fields contain the type and length in bytes of the colormap
values, respectively. The following ras_maptype's are supported:

/* Sun registered ras_maptype's */
#define RMT_RAW 2

/* Sun supported ras_maptype's */
#define RMT_NONE 0 /* ras_maplength is expected to be 0 */
#define RMT_EQUAL_RGB 1 /* red[ras_maplength/3],green[],blue[] */

If ras_maptype is not RMT_NONE and the ras_maplength is not 0, then the colormap values
are the ras_maplength bytes immediately after the header. These values are either uninterpreted
bytes (usually with the ras_maptype set to RMT_RAW) or the equal length red, green and blue
vectors, in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter case, the
ras_maplength must be three times the size in bytes of any one of the vectors.

The following function can be used to create a new raster file (of the type RT_STANDARD
& RMT_EQUAL_RGB) in memory:

struct rasterfile* NewRasterFile(width, height, maplength)
int width; /* width of the image to be created */
int height; /* height of the image to be created */
int maplength; /* number of colors to be used */

{
struct rasterfile* localfile;
int index;

localfile = (struct rasterfile *)malloc(sizeof(struct rasterfile));
if (localfile == NULL) return localfile;

localfile->ras_red = NULL;
localfile->ras_green = NULL;



1.18 Part 1: Image Processing Techniques

localfile->ras_blue = NULL;
localfile->ras_matrix = NULL;

if (width * height != 0) {
maplength = (maplength > 256) ? 256 : maplength;

localfile->header.ras_magic = RAS_MAGIC; /* magic number */
localfile->header.ras_width = width; /* width (pixels) of image */
localfile->header.ras_height = height; /* height (pixels) of image */
localfile->header.ras_depth = 8; /* depth of pixel */
localfile->header.ras_length = width * height; /* length (bytes) of image */
localfile->header.ras_type = RT_STANDARD; /* type of file */
localfile->header.ras_maptype = RMT_EQUAL_RGB; /* type of colormap */
localfile->header.ras_maplength = maplength * 3; /* length (bytes) of following map */

localfile->ras_red = (unsigned char *)calloc(localfile->header.ras_maplength/3, 1);
localfile->ras_green= (unsigned char *)calloc(localfile->header.ras_maplength/3, 1);
localfile->ras_blue = (unsigned char *)calloc(localfile->header.ras_maplength/3, 1);
localfile->ras_matrix = (unsigned char *)calloc(localfile->header.ras_length, 1);

if ((localfile->ras_red == NULL) || (localfile->ras_green == NULL) ||
(localfile->ras_blue == NULL) || (localfile->ras_matrix == NULL))

DeleteRasterFile(localfile);
else {

for (index = 0; index < localfile->header.ras_maplength/3; index++) {
*(localfile->ras_red + index) = (unsigned char)index;
*(localfile->ras_green + index) = (unsigned char)index;
*(localfile->ras_blue + index) = (unsigned char)index;

}
}

}

return localfile;
}

The following function can be used to delete a raster file from memory:

void DeleteRasterFile(localfile)
struct rasterfile* localfile;

{
if (localfile != NULL) {

if (localfile->ras_red != NULL) free(localfile->ras_red);
if (localfile->ras_green != NULL) free(localfile->ras_green);
if (localfile->ras_blue != NULL) free(localfile->ras_blue);
if (localfile->ras_matrix != NULL) free(localfile->ras_matrix);
free(localfile);
localfile = NULL;

}
return;

}

The following function can be used to read a raster file (of the type RT_STANDARD &
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RMT_EQUAL_RGB) from disk to memory:

struct rasterfile* ReadRasterFile(filename)
char* filename;

{
struct rasterfile* localfile = NULL;
FILE* diskfile;
int width, height;
int length, maplength;

if ((diskfile = fopen(filename, "r")) == NULL) return localfile; /* cannot open file */
if ((localfile = NewRasterFile(0, 0, 0)) == NULL) {

fclose(diskfile);
return localfile; /* cannot create new raster file */

}
if (fread(&localfile->header, sizeof(struct rasterheader), 1, diskfile) != 1) {

fclose(diskfile);
DeleteRasterFile(localfile);
return localfile; /* cannot read rasheader */

}

localfile->header.ras_magic = swaplong(&localfile->header.ras_magic);
localfile->header.ras_width = swaplong(&localfile->header.ras_width);
localfile->header.ras_height = swaplong(&localfile->header.ras_height);
localfile->header.ras_depth = swaplong(&localfile->header.ras_depth);
localfile->header.ras_length = swaplong(&localfile->header.ras_length);
localfile->header.ras_type = swaplong(&localfile->header.ras_type);
localfile->header.ras_maptype = swaplong(&localfile->header.ras_maptype);
localfile->header.ras_maplength = swaplong(&localfile->header.ras_maplength);

if ((localfile->header.ras_magic != RAS_MAGIC) ||
     (localfile->header.ras_type != RT_STANDARD) ||
     (localfile->header.ras_maptype != RMT_EQUAL_RGB) ||
     (localfile->header.ras_depth != 8)) {

fclose(diskfile);
DeleteRasterFile(localfile);
return localfile; /* not supported type of raster file */

}

width = localfile->header.ras_width;
height = localfile->header.ras_height;
length = localfile->header.ras_length;
maplength = localfile->header.ras_maplength/3;

DeleteRasterFile(localfile);
if ((localfile = NewRasterFile(width, height, maplength)) == NULL) {

fclose(diskfile);
return localfile; /* cannot create new raster file */

}

if ((fread(localfile->ras_red, 1, maplength, diskfile) != maplength) ||
    (fread(localfile->ras_green, 1, maplength, diskfile) != maplength) ||
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    (fread(localfile->ras_blue, 1, maplength, diskfile) != maplength)) {
fclose(diskfile);
DeleteRasterFile(localfile);
return localfile; /* cannot read color table */

}

if (fread(localfile->ras_matrix, 1, length, diskfile) != length) {
fclose(diskfile);
DeleteRasterFile(localfile);
return localfile; /* cannot read image */

}

fclose(diskfile);
return localfile;

}

long swaplong(l) long* l; {
unsigned char* b; unsigned long l_swapped;
b = (unsigned char *)l; l_swapped = 256L*256L*256L*(long)b[0] + 256L*256L*(long)b[1] +
256L*(long)b[2] + (long)b[3];
return (long)l_swapped;

}

The following function can be used to write a raster file to disk:

typedef int BOOL;
#define TRUE (BOOL)1
#define FALSE (BOOL)0

BOOL WriteRasterFile(filename, localfile)
char* filename;
struct rasterfile* localfile;

{
FILE* diskfile;
int ras_length, ras_maplength;
BOOL flag = FALSE;

if (localfile == NULL) return FALSE; /* no data */
if ((diskfile = fopen(filename, "w")) == NULL) return FALSE; /* cannot open file */

ras_length = localfile->header.ras_length;
ras_maplength = localfile->header.ras_maplength/3;

localfile->header.ras_magic = swaplong(&localfile->header.ras_magic);
localfile->header.ras_width = swaplong(&localfile->header.ras_width);
localfile->header.ras_height = swaplong(&localfile->header.ras_height);
localfile->header.ras_depth = swaplong(&localfile->header.ras_depth);
localfile->header.ras_length = swaplong(&localfile->header.ras_length);
localfile->header.ras_type = swaplong(&localfile->header.ras_type);
localfile->header.ras_maptype = swaplong(&localfile->header.ras_maptype);
localfile->header.ras_maplength = swaplong(&localfile->header.ras_maplength);
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if (fwrite(&localfile->header, sizeof(struct rasterheader), 1, diskfile) == 1)
if ((fwrite(localfile->ras_red, 1, ras_maplength, diskfile) == ras_maplength) &&
    (fwrite(localfile->ras_green, 1, ras_maplength, diskfile) == ras_maplength) &&
    (fwrite(localfile->ras_blue, 1, ras_maplength, diskfile) == ras_maplength) &&
    (fwrite(localfile->ras_matrix, 1, ras_length, diskfile) == ras_length))

flag = TRUE; /* file is saved */

localfile->header.ras_magic = swaplong(&localfile->header.ras_magic);
localfile->header.ras_width = swaplong(&localfile->header.ras_width);
localfile->header.ras_height = swaplong(&localfile->header.ras_height);
localfile->header.ras_depth = swaplong(&localfile->header.ras_depth);
localfile->header.ras_length = swaplong(&localfile->header.ras_length);
localfile->header.ras_type = swaplong(&localfile->header.ras_type);
localfile->header.ras_maptype = swaplong(&localfile->header.ras_maptype);
localfile->header.ras_maplength = swaplong(&localfile->header.ras_maplength);

fclose(diskfile);
return flag;

}

The following function can be used to make a copy of a raster file in memory:

struct rasterfile* CopyRasterFile(originalfile)
struct rasterfile* originalfile;

{
struct rasterfile* copyfile;
int index;

int width = originalfile->header.ras_width;
int height = originalfile->header.ras_height;
int length = originalfile->header.ras_length;
int maplength = originalfile->header.ras_maplength/3;

if ((copyfile = NewRasterFile(width, height, maplength)) == NULL) return copyfile;

for (index = 0; index < maplength; index++) {
*(copyfile->ras_red + index) = *(originalfile->ras_red + index);
*(copyfile->ras_green + index) = *(originalfile->ras_green + index);
*(copyfile->ras_blue + index) = *(originalfile->ras_blue + index);

}

for (index = 0; index < length; index++)
*(copyfile->ras_matrix + index) = *(originalfile->ras_matrix + index);

return copyfile;
}

To have a direct access to the pixels inside of raster file the following 4 functions can be
used:
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BOOL SetPset(localfile, ras_x, ras_y, ras_color)
struct rasterfile* localfile;
int ras_x, ras_y;
unsigned char ras_color;

{
if (localfile == NULL) return FALSE;
if ((ras_x < 0) || (ras_x >= localfile->header.ras_width)) return FALSE;
if ((ras_y < 0) || (ras_y >= localfile->header.ras_height)) return FALSE;
if (ras_color >= localfile->header.ras_maplength/3) return FALSE;

*(localfile->ras_matrix + ras_y * localfile->header.ras_width + ras_x) =
(unsigned char)ras_color;

return TRUE;
}

BOOL GetPset(localfile, ras_x, ras_y, ras_color)
struct rasterfile* localfile;
int ras_x, ras_y;
unsigned char* ras_color;

{
if (localfile == NULL) return FALSE;
if ((ras_x < 0) || (ras_x >= localfile->header.ras_width)) return FALSE;
if ((ras_y < 0) || (ras_y >= localfile->header.ras_height)) return FALSE;

*ras_color = *(localfile->ras_matrix + ras_y * localfile->header.ras_width + ras_x);

return TRUE;
}

void SetPsetFast(localfile, ras_x, ras_y, ras_color)
struct rasterfile* localfile;
unsigned int ras_x, ras_y;
unsigned char ras_color;

{
*(localfile->ras_matrix + ras_y * localfile->header.ras_width + ras_x) =
(unsigned char)ras_color;

}

void GetPsetFast(localfile, ras_x, ras_y, ras_color)
struct rasterfile* localfile;
unsigned int ras_x, ras_y;
unsigned char* ras_color;

{
*ras_color = *(localfile->ras_matrix + ras_y * localfile->header.ras_width + ras_x);

}

All the codes given here were compiled with the cc 3.0.1 compiler under UNIX Solaris 2.4
operation system on a SPARK Station 20.
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1.4. Image enhancement
One of the very important topics in image processing is image enhancement. Image
enhancement involves a collection of techniques that are used to improve the visual
appearance of an image, or to convert the image to a form which is better suited for human
or machine interpretation. There is no general theory of image enhancement because there is
no general standard for the quality of an image. Therefore, different classes of techniques
were developed over the past decades [1.4.1-1.4.8]. Some of them, which are most frequently
used in practice, are discussed below.

1.4.1. Gray level histogram modifications

A first-order global characteristic of an image is its gray level histogram. The gray level histogram
of an image is a chart, listing all of the gray levels that are used in the image on the horizontal
axis and indicating the number of pixels having each level on the vertical axis. The gray level
histogram of the image shown in Fig. 1.4.1a is shown as right inset. Gray level images usually
consist of 256 levels of gray, so, the horizontal axis of the histogram runs from 0 to 255. The
vertical axis varies in scale depending on the number of pixels in the image and the
distribution of the gray level values.

A set of techniques, called gray level histogram modifications, is used to improve the visual
appearance of an image. The techniques are based on remapping the gray levels within an
image by applying a transformation function. The function can either be linear or nonlinear.
The brightness of an image can be changed by applying the following function:

( ) ( )g x y f x y C, ,= +  where C  is a constant. When C > 0  the resulting image will be
brighter and when C < 0  the resulting image will be darker. An example of the application
of such a transformation (C = 125) to the image in Fig. 1.4.1a is shown in Fig. 1.4.1b. As
seen from the histogram (shown as right inset in Fig. 1.4.1b) all the gray levels in the original
histogram are shifted to the right by 125, but the histogram still has the same shape. The
contrast of an image can be changed by applying the following transformation function:

( ) ( )g x y K f x y, ,= ⋅  where K  is a constant. When K > 1 the resulting image has a
higher contrast comparing to the original image, and when K < 1 the resulting image has a
lower contrast. Finally, the following transformation function is often used:

( ) ( )g x y K f x y C, ,= ⋅ + . Here the variable K  adjusts the contrast and the variable C
adjusts the brightness of the image. A common linear transformation function

( ) ( ) ( ) ( ) ( )( )g x y
f x y f x y

f x y f x y,
max , min ,

, min ,=
−

⋅ −
255

,
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is called autoscaling. An example of the autoscaled image is given in Fig. 1.4.1c. As seen from
the histogram shown as right inset in Fig. 1.4.1c, the gray level histogram of the modified
image is shifted to the left and rescaled over the range of all available gray levels compared to
the gray level histogram of the original image shown in Fig. 1.4.1a.

 

 

Fig. 1.4.1. a) original image; b) the same image after brightness correction; c) results of
autoscaling of the gray level histogram; d) image after histogram linearization.

Using different values of K  and C  different transformation curves can be obtained. If the
transformed gray level values exceed the acceptable gray level range (usually from 0 to 255)
the output gray levels are set to the minimal and maximal allowable gray levels.

There are images in which nearly the full possible range of levels is used, but most of the
levels are associated with only a few pixels. To improve the visual 'quality' of such images the
histogram equalization is often applied. Gray level values are transformed relative to one
another with the goal to make the resulting gray level histogram 'as flat as possible' and to
space the peaks evenly over the range all gray levels. The following transformation function

a b

c d
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can be applied to perform the histogram equalization:

( )
( )

g x y
m

n
n

j
j

m j
j

f x y

,
,

=
−

⋅

=

=∑
∑1

0

0

where m  is the total number of gray levels in the original image f  and n j  is the number of
pixels having particular gray level j .

Descriptions of many other histogram transformations can be found in the literature [1.4.1-
1.4.8]. For example, a histogram linearization is performed with the aim to 'linearize' the
histogram of transformed image. An example of an image having a linearized gray level
histogram is shown in Fig. 1.4.1d.

1.4.2. Smoothing of noisy images

Noise is the random variation in the pixel content caused by the acquisition, digitization and
transmission process. An example of a 'noisy' image is shown in Fig. 1.4.2a. As seen from the
image, pixels which are affected by noise often appear markedly different from their
neighbor pixels. Noise cannot be eliminated altogether, it can be reduced by a process called
smoothing. The simples way of noise reduction is to analyze a few nearest neighbor pixels of
each pixel in the image and to see if the difference between the gray value of the pixel and
the gray values of its nearest neighbors is essential. Often smoothing by averaging is applied.
Here each pixel is replaced by the average of its neighbor pixels. Another effective way of
noise reduction is median filtering when each pixel is replaced by the median of its neighbor
pixels. The image, shown in Fig. 1.4.2b, is obtained by the median filtering of the image
shown in Fig. 1.4.2a.

There is a class of spatial filters called low-pass filters, which are often applied for image
smoothing. Their application is based on the discrete convolution of the original image with a
special mask. The discrete convolution of an image f  with a mask h  produces an image g :

( ) ( ) ( )g x y h i j f x i y j
j u

u

i v

v
, , * ,= + +

= −
∑

= −
∑

where h  is a 2 1v +  by 2 1u +  matrix. The output ( )g x y,  at a point ( )x y,  is given by a
weighted sum of input pixels around ( )x y,  where the weights are given by the ( )h i j, . In
practice this equation is implemented as a series of shift-multiply-sum operations. The values
of h  are referred to as the filter kernel.
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Fig. 1.4.2. a) image with 20% random noise added; b) the same image after applying the
median filter.

C code, implementing the discrete convolution technique is given below.

struct rasterfile* DiscreteConvolution(image, mask, masksizeX, masksizeY)
struct rasterfile* image;
float* mask;
int masksizeX, masksizeY;

{
struct rasterfile* newimage = NULL;
int x, y, i, j, u, v;
float S;
unsigned char pixelvalue;

/* is image valid? */
if (image == NULL) return newimage;
if ((newimage = CopyRasterFile(image)) == NULL) return newimage;

v = (masksizeX - 1 ) / 2; u = (masksizeY - 1 ) / 2;

/* convolution */
for (x = 0; x < image->header.ras_width; x++)

for (y = 0; y < image->header.ras_height; y++) {
S = 0.0F;
for (i = -v; i <= +v; i++)

for (j = -u; j <= +u; j++) {
if (GetPset(image, x+i, y+j, &pixelvalue))

S += pixelvalue * mask[(j+u) * masksizeX + i];
}

pixelvalue = (S < image->header.ras_maplenght/3) ?
((S > 0) ? (unsigned char)S : (unsigned char)0) :
(unsigned char)(image->header.ras_maplenght/3 - 1);

SetPsetFast(image, x, y, pixelvalue);
}

a b
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return newimage;
}

/* an example of a mask of the size 3x3 */
float mask[] = { 1/9, 1/9, 1/9,    1/9, 1/9, 1/9,    1/9, 1/9, 1/9 };

C code 1.4.1. The function DiscreteConvolution requires an image, a mask and its size and
returns an image which is the result of the discrete convolution of the original image with
the mask.

The effect of the convolution depends on the type of filter kernel used. To produce a
smoothing effect the following filters can be used:
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An interesting application of a smoothing is a shading correction. An example of an image for
which a shading correction is necessary, is shown in Fig. 1.4.3a.

 

Fig. 1.4.3. Shading correction a) original image; b) the same image after shading correction.

Shading correction can be done in the following way. First, the original image is smoothed
applying a few times (9 for the given example) a low-pass filter of a large size (49x49 for the
given example). Second, the difference between the original and the smoothed images is

a b
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calculated and the resulting image is autoscaled. The result of such a sequence of operations
is the shadow-corrected image shown in Fig. 1.4.3b.

Since noise reduction in images is a very important topic in practical image analysis a lot of
different methods of smoothing were developed. Their description can be found in the
literature [1.4.1-1.4.8].

1.4.3. Sharpening

Similarly to smoothing there is a class of spatial filters called high-pass filters, which are often
applied for image sharpening. Their application is also based on the discrete convolution of
the original image with a special mask. To produce a sharpening effect the following filters
can be used:
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An example of an image where a sharpening may be necessary is shown in Fig. 1.4.4a. The
resulted image with enhanced edges is shown in Fig. 1.4.4b. Another way of making an
image sharper is to apply edge detection filters such as the Laplace, Roberts, Sobel filters
[1.4.1-1.4.8], and to add the found edges to the original image.

 

Fig. 1.4.4 a) original image; b) the same image after applying a sharpening filter.

a b



Part 1: Image Processing Techniques 1.29

1.5. Image segmentation
Segmentation is one of the key problems in image processing. A popular method used for
image segmentation is thresholding. After thresholding a binary image is formed where all
object pixels have one gray level and all background pixels have another - generally the
object pixels are 'black' and the background is 'white'. The best threshold is the one that
selects all the object pixels and maps them to 'black'. Various approaches for the automatic
selection of the threshold have been proposed [1.5.1-1.5.10].

Thresholding can be defined as mapping of the gray scale into the binary set { }0 1, :

( ) ( ) ( )
( ) ( )S x y

if g T

if g T

x y x y
x y x y

,
,

, ,
, ,

=
≥
<




0,

1

where ( )S x y,  is the value of the segmented image, ( )g x y,  is the gray level of the pixel
( )x y,  and ( )T x y,  is the threshold value at the coordinates ( )x y, . In the simplest case

( )T x y,  is coordinate independent and a constant for the whole image. It can be selected,
for instance, on the basis of the gray level histogram. When the histogram has two
pronounced maxima, which reflect gray levels of object(s) and background, it is possible to
select a single threshold for the entire image. A method which is based on this idea and uses
a correlation criterion to select the best threshold, is described below. Sometimes gray level
histograms have only one maximum. This can be caused, e.g., by inhomogeneous
illumination of various regions of the image. In such case it is impossible to select a single
thresholding value for the entire image and a local binarization technique (described below)
must be applied. General methods to solve the problem of binarization of inhomogeneously
illuminated images, however, are not available.

Segmentation of images involves sometimes not only the discrimination between objects and
the background, but also separation between different regions. One method for such
separation is known as watershed segmentation [1.5.11-1.5.14] the basic principles of which
are described below.

1.5.1. Global thresholding using a correlation criterion

Concerning the thresholding problem, let g  represents the possible gray values in the
original image. These values are characterized by the below- and above-threshold means

( )µ0 T  and ( )µ1 T  of the original image, given by
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where g n= 0 1, , ...,  are gray values and T  ( 0 < <T n ) is the threshold level. The
probability distribution pg  of gray values g  is given by p f Ng g=  where N  is the total
number of pixels in the image and f g  is the number of pixels having gray value g . The
expected values become
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Fig. 1.5.1. The results of applying the correlation criterion based technique a) secondary
electron SEM image of an urban dust particle; b) it gray level histogram; c) correlation as a
function of the threshold level; d) the resulting bilevel image for a threshold of 186.

The variances are given by

a b

c d
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( )V E Ex xx x= − 2 , ( ) ( ) ( )( )V T E T E Ty yy y= −
2
.

Actually, Ex , Exx  and Vx  are independent of the threshold T  as they are obtained from the
original image. The correlation coefficient given by

( ) ( )
( )

ρ xy
xy x y

x y

T
E T E E T

V V T
( ) =

−
,

is now a function of the thresholding level. The optimal value of T  corresponds to the value
that maximizes the correlation between the original and the bilevel images. This value is
found by iteration.

The result of applying the technique to a secondary electron SEM image of an urban dust
particle is shown in Fig. 1.5.1. As seen from the example, the correlation method selected a
meaningful threshold.

A C implementation of this technique is given below.

struct rasterfile* AutoThreshold(image)
struct rasterfile* image;

{
/* local variables */
struct rasterfile* newimage = NULL;
unsigned char thresh, cmaplength, color, g, T;
unsigned int x, y;
unsigned int* ColorTable;
float Pg, Ex, Exx, Ey, Eyy, Exy, Vx, Vy, m0, m1, sPg, Rxy, maxRxy;
unsigned int length, max_length;

/* is image valid? */
if (image == NULL) return FALSE;
if ((newimage = CopyRasterFile(image)) == NULL) return newimage;

cmaplength = image->header.ras_maplength / 3;

/* first, calculate the gray level histogram */
ColorTable = (unsigned int*)calloc(cmaplength, sizeof(unsigned int));

if (ColorTable == NULL) {
DeleteRasterFile(newimage);
return newimage;

}

max_length = image->header.ras_width * image->header.ras_height;

for (length = 0; length < max_length; length++)
ColorTable[*(image->ras_matrix + length)] += 1;

/* calculate threshold independent variables */
Ex = Exx = maxRxy = Ey = Exy = Eyy = 0;
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for (g = 0; g <= cmaplength; g++) {
Pg = (float)ColorTable[g] / (image->header.ras_width * image->header.ras_height);
Ex += g * Pg;
Exx += g * g * Pg;

} /* Ex, Exx - Ok. */

Vx = Exx - Ex * Ex; /* Vx - Ok. */

for (T = 0; T < cmaplength; T++) {
/* calculate threshold dependent variables */
m0 = 0; sPg = 0;

for (g = 0; g <= T; g++) {
Pg = ColorTable[g] / (image->header.ras_width * image->header.ras_height);
sPg += Pg;
m0 += g * Pg;

}

if (sPg != 0) m0 /= sPg; /* m0 - Ok. */
m1 = 0; sPg = 0;

for (g = (T + 1); g <= cmaplength; g++) {
Pg = ColorTable[g] / (image->header.ras_width * image->header.ras_height);
sPg += Pg;
m1 += g * Pg;

}

if (sPg != 0) m1 /= sPg; /* m1 - Ok. */

for (g = 0; g <= T; g++) {
Pg = ColorTable[g] / (image->header.ras_width * image->header.ras_height);
Ey += m0 * Pg;
Exy += g * m0 * Pg;
Eyy += m0 * m0 * Pg;

}

for (g = (T + 1); g <= cmaplength; g++) {
Pg = ColorTable[g] / (image->header.ras_width * image->header.ras_height);
Ey += m1 * Pg;
Exy += g * m1 * Pg;
Eyy += m1 * m1 * Pg;

} /* Ey, Exy, Eyy - Ok. */

Vy = Eyy - Ey * Ey; /* Vy - Ok. */

/* calculate correlation and find the largest value */
if (Vx*Vy >= 0) {

Rxy = sqrt(Vx*Vy);
if (Rxy != 0.0) Rxy = (Exy - Ex * Ey) / Rxy;
if (Rxy >= maxRxy) {

maxRxy = Rxy;
thresh = T; /* thresh - Ok. */
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}
}

}

/* finally, apply the best threshold */
for (length = 0; length < max_length; length++)

if (*(image->ras_matrix + length) >= thresh)
*(newimage->ras_matrix + length) = (unsigned char)(cmaplength - 1);

else
*(newimage->ras_matrix + length) = (unsigned char)0;

free(ColorTable);
return TRUE;

}

C code 1.5.1. The function AutoThreshold requires an image and returns the thresholded
image.

1.5.2. Local binarization using discrete convolution

This method of binarization is based on the application of the discrete convolution filtering
technique that produces a transformed image which can be easy thresholded using 1 as the
threshold value. It was found that in order to produce a 'binarization' effect the following
kernels can be used:
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They are constructed according to the following rule: the elements of the kernel are equal to
-1 if they belong to the first or last rows or the first or last columns, -2 if they are not defined
yet and belong to the second or last but one rows or the second or last but one columns, and
so on. The central element of the kernel equals minus the sum of all elements of the kernel
plus an additional parameter p . The size of the kernel can be different, but for many
applications kernels having the size 5x5 or 7x7 give good results.

For decision making about a suitable numerical value of parameter p , the coefficient of
correlation between original and convoluted images is used. It is calculated as follows:
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( ) ( )( )
( ) ( )( )

r p
Cov f g p

Var f Var g p
=

⋅

,

where f  and ( )g p  are the original gray level image and the image convoluted using a value
p  for the parameter, respectively.
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Fig. 1.5.2. a) original image; b) its gray level histogram; c) convolution kernel; d) correlation
as a function of the parameter p ; e) image binarized by global thresholding using the
correlation criterion; f) image binarized by the local binarization technique.
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The correlation coefficient ( )r p  reaches a maximum for a certain value of p . The
parameter p  corresponding to the maximal correlation is used as a suitable one for the given
image.
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Fig. 1.5.3. a) original image; b) its gray level histogram; c) convolution kernel; d) correlation
as a function of the parameter p ; e) image binarized by global thresholding using the
correlation criterion; f) image binarized by the local binarization technique.

a b

c d

e f



1.36 Part 1: Image Processing Techniques

Figs 1.5.2a and 1.5.3a represent two images taken from the surface of a material with a cell
structure. Both images have inhomogeneously illuminated regions; the upper left corner of
both images is much darker than the central part. The gray level histogram of both images
(Figs 1.5.2b and 1.5.3b, respectively) has no pronounced maxima related to 'objects' and/or
background. A single threshold value selection for the whole image does not allow to
perform good segmentation (Figs 1.5.2e and 1.5.3e, respectively). The proposed technique
gives binary images (Figs 1.5.2f and 1.5.3f) of much better quality than those obtained by the
global binarization method.

A C implementation of this technique is given below.

struct rasterfile* LocalThreshold(image, masksize)
struct rasterfile* image;
int masksize;

{
/* local variables */
struct rasterfile* tmpimage = NULL, newimage = NULL;
float* mask;
int p, i;
float correlation, maxcorrelation = 0.0;

/* is image valid? */
if (image == NULL) return newimage;

/* make an appropriate mask */
mask = MakeMask(masksize);
if (mask == NULL) return newimage;

p = mask[masksize * (masksize - 1) / 2 + (masksize - 1) / 2];

/* perform convolution & calculate correlation */
for (i = 1; i < masksize * 2; i++) {

mask[masksize * (masksize - 1) / 2 + (masksize - 1) / 2] = p + i;
tmpimage = DiscreteConvolution(image, mask, masksize, masksize);
if (tmpimage == NULL) break;

correlation = ImageCorrelation(image, tmpimage);

if (correlation > maxcorrelation) {
maxcorrelation = correlation;
if (newimage != NULL) DeleteRasterFile(newimage);
newimage = CopyRasterFile(tmpimage);

}
DeleteRasterFile(tmpimage);

}

free(mask);
return newimage;

}
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/* MakeMask is used to make a mask of a given size according to the rules described above */
float* MakeMask(masksize)

int masksize;
{

float* mask;
int i, j;
float summ = 0.0F;

/* is the size valid? */
if (masksize % 2 == 1) masksize--;
masksize = (masksize < 3) ? 3 : ((masksize > 15) ? 15 : masksize );

/* getting memory for the mask */
mask = (float*)calloc(masksize * masksize, sizeof(float));
if (mask == NULL) return mask;

/* filling in the mask */
for (i = 0; i < (masksize+1)/2; i++)

for (j = 0; j < (masksize+1)/2; j++) {
mask[i * masksize + j] = -(((i < j) ? i : j) + 1);
mask[(masksize - 1 - i) * masksize + j] = -(((i < j) ? i : j) + 1);
mask[i * masksize + (masksize - 1 - j)] = -(((i < j) ? i : j) + 1);
mask[(masksize - 1 - i) * masksize + (masksize - 1 - j)] = -(((i < j) ? i : j) + 1);

}

/* counting the mask's summ */
for (i = 0; i < masksize; i++)

for (j = 0; j < masksize; j++)
summ += mask[i * masksize + j];

/* filling in the central element */
mask[masksize * (masksize - 1) / 2 + (masksize - 1) / 2] = -summ;
return mask;

}

/* ImageCorrelation is used to calculate the coefficient of correlation between two images */
float ImageCorrelation(image1, image2)

struct rasterfile* image1;
struct rasterfile* image2;

{
float expected_image1, expected_image2;
float covariance, correlation;
float variance_image1, variance_image2;
float k_image1, k_image2, max_k1_k2;

if (image1 == NULL) return -2.0;
if (image2 == NULL) return -2.0;

k_image1 = (float)(image1->header.ras_maplength/3 - 1);
k_image2 = (float)(image2->header.ras_maplength/3 - 1);

max_k1_k2 = (k_image1 > k_image2) ? k_image1 : k_image2;
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k_image1 = max_k1_k2 / k_image1;
k_image2 = max_k1_k2 / k_image2;

expected_image1 = ExpectedValue(image1, k_image1);
expected_image2 = ExpectedValue(image2, k_image2);

variance_image1 = Variance(image1, expected_image1, k_image1);
variance_image2 = Variance(image2, expected_image2, k_image2);

covariance = Covariance(image1, expected_image1, k_image1,
          image2, expected_image2, k_image2);

correlation = covariance / sqrt(variance_image1 * variance_image2);
return correlation;

}

/* ExpectedValue is used by ImageCorrelation function */
float ExpectedValue(image, k_image)

struct rasterfile* image;
float k_image;

{
float expected = 0.0;
unsigned int x, y;
unsigned char color;

for (x = 0; x < image->header.ras_width; x++)
for (y = 0; y < image->header.ras_height; y++) {

GetPsetFast(image, x, y, &color);
expected = expected + (float)color * k_image;

}

expected /= (image->header.ras_width * image->header.ras_height);
return expected;

}

/* Variance is used by ImageCorrelation function */
float Variance(image, expected_value, k_image)

struct rasterfile* image;
float expected_value;
float k_image;

{
float variance = 0.0;
unsigned int x, y;
unsigned char color;

for (x = 0; x < image->header.ras_width; x++)
for (y = 0; y < image->header.ras_height; y++) {

GetPsetFast(image, x, y, &color);
variance += ((color * k_image - expected_value) *

(color * k_image - expected_value));
}

variance /= (image->header.ras_width * image->header.ras_height);
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return variance;
}

/* Covariance is used by ImageCorrelation function */
float Covariance(image1, expected_value1, k_image1, image2, expected_value2, k_image2)

struct rasterfile* image1;
float expected_value1, k_image1;
struct rasterfile* image2;
float expected_value2, k_image2;

{
float covariance = 0.0;
unsigned int x, y;
unsigned char color1, color2;

for (x = 0; x < image1->header.ras_width; x++)
for (y = 0; y < image1->header.ras_height; y++) {

GetPsetFast(image1, x, y, &color1);
GetPsetFast(image2, x, y, &color2);
covariance += ((color1 * k_image1 - expected_value1) *

    (color2 * k_image2 - expected_value2));
}

covariance /= (image1->header.ras_width * image1->header.ras_height);
return covariance;

}

C code 1.5.2. The function LocalThreshold requires an image and the size of the mask to be
used and returns the thresholded image.

1.5.3. Segmentation based on watershed transform

The method of segmentation based on the use of watershed lines was developed in the
framework of mathematical morphology. Consider an image f  as a topographic surface and
define the catchment basins and the watershed lines in terms of a flooding process. Imagine
that each cavity of the surface is pierced and the surface is plunged into a lake with a
constant vertical speed. The water entering through the holes floods the surface. The
moment that the floods filling two distinct catchment basins start to merge, a dam is erected
in order to prevent mixing of the floods. The union of all dams defines the watershed lines
of the image f .

There are different computer implementations of watershed algorithms. Basically, they can
be divided into two groups: algorithms which simulate the flooding process and procedures
aiming at direct detection of the watershed points. A modification of the watershed
algorithm for the case of binary images is described in the section 1.6.
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1.6. Processing of binary images
Binary images, as described above, consist of groups of 'black' and 'white' pixels selected on
the basis of some properties. Usually it is assumed that an object (a particle) consists of
'black' pixels whereas 'white' pixels represent the background. An object in a binary image
can be detected by the bottom-to-top left-to-right procedure as shown in Fig. 1.6.1a. On a rectangular
grid a pixel is said to be four- or eight-connected when it has the same properties as one of its
nearest four or eight neighbors as shown in Fig. 1.6.1b. Usually, one considers eight-
connectivity for an object and four-connectivity for the background [1.6.1], otherwise there
are some difficulties as shown in Fig. 1.6.1c. The boundary is a linked edge that characterizes
the shape of an object. Two different types of boundaries can be found if one operates on 4-
or 8-connected neighborhoods. In the case of 4-connectivity a point of an object is
considered to belong to the object's boundary if at least one of its 4-connected neighbor
points belongs to the background. In the case of 8-connectivity a point of an object is
considered to belong to the object's boundary if at least one of its 8-connected neighbor
points belongs to the background. In all applications described in this work, the latter type of
boundary is used.

 

Fig. 1.6.1. a) object detection bottom-to-top left-to-right procedure; b) connectivity on a
rectangular grid: pixel A and its 4-connected and 8-connected neighbors; c) connectivity
paradox: “Are B and C connected?”.

1.6.1. Image enhancement

Methods for image enhancement, mentioned for the case of gray level images, can be applied
to the binary images too. Of course, they should be slightly adapted in order to be used with

a b c



Part 1: Image Processing Techniques 1.41

'black' and 'white' gray values. However, there are some specific techniques which are
designed specifically for binary images. Some of them are described below.

Binary morphology

Many binary image enhancement procedures are based on morphological operations [1.6.2]
such as erosion and dilation. The simplest kind of erosion, sometimes referred to as classical
erosion, is to remove any foreground pixel touching another pixel which is a part of the
background. Instead of removing pixels from objects a complementary operation known as
dilation can be used to add pixels. The classical dilation adds any background pixel which
touches another pixel that is already part of an object.

An ultimate erosion erodes binary objects without deleting them. An ultimate dilation dilates
binary objects but does not connect them.

The combination of an erosion followed by a dilation is called an opening. The combination of
a dilation followed by an erosion is called a closing. Binary closing can be used, for example, to
fill small holes and enhance edges as shown in Fig. 1.6.2. Many morphological filters are
based on these two operations.

 

Fig. 1.6.2. a) a binary image of objects having some holes inside and noisy boundaries; b)

the same image after binary opening when erosion and dilation were applied 4 times.

A combination of simple morphological operations can be used to perform very complicated
tasks. For example, a combination of an erosion followed by an ultimate dilation can be used

a b
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to perform a touching objects segmentation. An example is shown in Fig. 1.6.3.

 

Fig. 1.6.3. a) a binary image of touching objects; b) the same image after sequential
application of binary erosion (4 times) and ultimate binary dilation (also 4 times).

The difference between dilated and eroded image is called a morphological gradient. The
difference between original binary image and its binary opening is called the top-hat transform.
The difference between the binary closing of a binary image and the original binary image is
called the black top-hat transform. One possible application of such transforms is contour
detection in binary images.

A C code for binary erosion and dilation is given below.

struct rasterfile* BinaryErosion(image, background, foreground, connectivity)
struct rasterfile* image;
int background, foreground, connectivity;

{
/* few local variables */
int ras_x, ras_y, kx, ky, test;
struct rasterfile* temp_image = NULL;
unsigned char pixel;

/* are the image and the connectivity type valid? */
if (image == NULL) return temp_image;
if ((connectivity != 4) && (connectivity != 8)) return temp_image;

/* making new image */
if ((temp_image = CopyRasterFile(image)) == NULL) return temp_image;

for (ras_x = 0; ras_x < image->header.ras_width; ras_x++)
for (ras_y = 0; ras_y < image->header.ras_height; ras_y++) {

a b
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GetPsetFast(image, ras_x, ras_y, &pixel);
if (pixel != foreground) continue;

/* check 4 or 8 neighbor pixels */
test = 0; kx = -1;
while ((kx < 2) && !test) {

if ((ras_x + kx >= 0) && (ras_x + kx < image->header.ras_width)) {
ky = -1;
while ((ky < 2) && !test) {

if ((connectivity == 4) && (kx * ky != 0)) goto next;
if ((ras_y+ky >= 0) && (ras_y+ky < image->header.ras_height)) {

GetPsetFast(image, (ras_x+kx), (ras_y+ky), &pixel);
if (pixel == background) test = 1;

}
next: ++ky;

}
}
++kx;

}

/* should the pixel be removed? */
if (test) SetPsetFast(temp_image, ras_x, ras_y, background);

}

return temp_image;
}

struct rasterfile* BinaryDilation(image, background, foreground, connectivity)
struct rasterfile* image;
int background, foreground, connectivity;

{
return BinaryErosion(image, foreground, background, connectivity);

}

C code 1.6.1. The functions BinaryErosion and BinaryDilation require a binary image, colors
of the background and the foreground and the type of the connectivity (4 or 8). They return
eroded and dilated binary images, respectively.

Shrink and swell filters

Shrink and swell filters [1.6.3] are often used to remove noise and fill small holes. A shrink
filter is used to remove noise from the background. The entire image is scanned and each
foreground pixel is examined. If at least k  neighbors are background pixels, this pixel is
changed to a background pixel. A swell filter is used to fill the holes in the foreground. It
works in a similar way as the shrink filter. The entire image is scanned and each background
pixel is examined. If at least k  neighbors are foreground pixels, this pixel is changed to a
foreground pixel. In both cases the value of k  is the filter index and values between 5 and 8
are typically used.
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1.6.2. Contour following techniques

A contour following technique is used to obtain a sequential list of the contour coordinates
or its chain encode. An example of a binary image of a particle, its contour coordinates and
chain encode are shown in Fig. 1.6.4.
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Fig. 1.6.4. Chain code (b) and a connected list of the contour coordinates ( c).

Chain representation of a contour is desirable in those applications which require the
contours of particles to be stored. In this case, chain encoding allows to reduce the space
needed to record the information. Otherwise a list of the contour coordinates is more suited
for an on-line analysis such as fractal or Fourier analysis. Having a sequential list of the
contour coordinates ( ){ }x yi i,  the perimeter of the particle can be calculated as

( ) ( )P x x y yi i i i
i

= − + −− −∑ 1
2

1
2 .

Different contour following techniques are reported in the literature [1.6.1, 1.6.4, 1.6.5], three
of them are described below. It was found that one of the most frequently used techniques,
'turtle' procedure, has an essential drawback and, therefore, its usage in practice should be
avoided. So-called crack following technique was found to be most effective and simple for
computer implementation.
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'Turtle' procedure

The algorithm operates on 4-connected neighbors. The turtle starts from a boundary point: if
the current pixel belongs to the object, it turns right and advances one pixel; if the current
pixel belongs to the background, it turns left and advances one pixel (Fig 1.6.5). The
algorithm terminates when the turtle returns to the starting boundary point.

    

Fig. 1.6.5. Turtle procedure. Sometimes different contours can be tracked starting from
different border points.

The turtle procedure has two disadvantages:

1. Certain loops occur during boundary following as illustrated in Fig. 1.6.5. An additional
processing of the list of the contour coordinates obtained by this method should be done.

2. The method is starting point dependent as shown in Figs 1.6.5a and 1.6.5b. It is hardly
possible to avoid this dependency.

Crack following

The algorithm operates on 4-or 8-connected neighbors. Suppose, we are staying on the
border between the object and the background where point L  belongs to the object and
point R  belongs to the background as shown in Fig. 1.6.6a. This pair of the points defines
one of the cracks on the border. We are facing two other points L1  and R1  which are 4-
adjacent to L  and R , respectively. Then the following rules define the next crack on the
border (see Fig. 1.6.6b):

a b
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1. L Lnew = 1 , R Rnew = 1  if L1  belongs to the object and R1  does not belong to the object;

2. L Lnew = , R Lnew = 1  if L1  and R1  do not belong to the object;

3. L Rnew = 1 , R Rnew =  if L1  and R1  belong to the object.

The fourth rule is different in the cases of 4- and 8-connectivity:

4a. L Lnew = , R Lnew = 1  if L1  does not belong to the object and R1  belongs to the object;

4b. L Rnew = 1 , R Rnew =  if L1  does not belong to the object and R1  belongs to the object.

The algorithm terminates when we come back to the initial pair of points.

     

Fig. 1.6.6. a) definition of the crack and some important points; b) illustrations of the rules
for the crack following algorithm.

A C implementation of the crack following technique is given below.

struct i_point {int x; int y};

long ExtractContour(image, the_x, the_y, prtcolor, bgcolor, cntcolor, contour, internalParticle)
struct rasterfile* image; /* raster image */
int the_x, the_y; /* a point on the contour */
unsigned char prtcolor; /* particle color */
unsigned char bgcolor; /* background color */
unsigned char cntcolor; /* contour color */
struct i_point* contour; /* contour's coordinates (to be found) */
BOOL* internalParticle; /* does particle touch a border of the image? */

{
/* internal variables */
struct i_point starting, this; /* */
unsigned char pointcolor, l_p_color, r_p_color;
char direction = 0;

a b
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long pindex = 0L, perimeter1 = 0L, perimeter2 = 0L;
BOOL status = TRUE;

/* rotation table */
struct i_point l_shift[4], r_shift[4];
/* 0: */ l_shift[0].x = +1; l_shift[0].y = 0; r_shift[0].x = +1; r_shift[0].y = -1;
/* 1: */ l_shift[1].x = 0; l_shift[1].y = +1; r_shift[1].x = +1; r_shift[1].y = +1;
/* 2: */ l_shift[2].x = -1; l_shift[2].y = 0; r_shift[2].x = -1; r_shift[2].y = +1;
/* 3: */ l_shift[3].x = 0; l_shift[3].y = -1; r_shift[3].x = -1; r_shift[3].y = -1;

/* initialization */
starting.x = this.x = the_x;
starting.y = this.y = the_y;

/* is image valid? */
if (image == NULL) return -1L;

/* crack following */
do {

if (!GetPset(image, this.x+l_shift[direction].x, this.y+l_shift[direction].y, &l_p_color)) {
l_p_color = bgcolor;
status = FALSE;

}
if (!GetPset(image, this.x+r_shift[direction].x, this.y+r_shift[direction].y, &r_p_color)) {

r_p_color = bgcolor;
status = FALSE;

}
if ((r_p_color == prtcolor) || (r_p_color == cntcolor)) {

perimeter1 += 1;
this.x += r_shift[direction].x;
this.y += r_shift[direction].y;
direction = (direction == 0) ? 3 : (direction - 1);
SetPsetFast(image, this.x, this.y, cntcolor);
contour[pindex].x = this.x;
contour[pindex].y = this.y;
pindex++;

}
else if ((l_p_color == prtcolor) || (l_p_color == cntcolor)) {

perimeter2 += 1;
this.x += l_shift[direction].x;
this.y += l_shift[direction].y;
SetPsetFast(image, this.x, this.y, cntcolor);
contour[pindex].x = this.x;
contour[pindex].y = this.y;
pindex++;

}
else

direction = (direction == 3) ? 0 : (direction + 1);
} while ((this.x != starting.x) || (this.y != starting.y) || (direction != 0));
*internalParticle = status;
return (long)(1.4142*perimeter1 + perimeter2);

}
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C code 1.6.2. The function ExtractContour requires an image, the coordinates of a point on
the border, the particle, background and border colors, allocated memory for the traced
contour (to be found) and the pointer to the Boolean variable which after processing
contains TRUE if the particle does not coincide with a border of the image. The function
returns the perimeter.

Border following

This algorithm operates on 4-or 8-connected neighbors. Suppose, we found a boundary
point P  and defined the eight neighbors R R R1 2 8, , ...,  of P  in clockwise direction
starting from the right 4-adjacent to P  point as shown in the Fig. 1.6.7a. Then the following
rules define a new point of the border (Fig. 1.6.7b).

     

Fig. 1.6.7. a) definition of the boundary point P  and its eight neighbors

R R R1 2 8, , ..., ; b) an illustration of the rules used for the border following algorithm.

If 8-connectivity is used: let Ri  be the first of R 's that belongs to the object, then P Rnew i=
and R Rnew i1 1( ) = −  (if i − =1 0  we define i − =1 8 ).

If 4-connectivity is used: let Ri  be the first 4-neighbour of P  (the first of the R1 , R3 , R5  or
R7 ) that belongs to the object, then if Ri−1  does not belong to the object, take P Rnew i=
and R Rnew i1 1( ) = − ; if Ri−1  belongs to the object, take P Rnew i= −1  and R Rnew i1 2( ) = −  (if
i − = −2 1 we define i − =2 7 ).

The algorithm terminates when we come to the initial P  again and the current R1  coincides
with the initial R1 .

8-connectivity

4-connectivity

a b
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1.6.3. Perimeter estimation by different yardsticks

The problem of perimeter estimation is considered in fractal analysis of object profiles. Since
fractal analysis is used for some of the applications described in Part 3, the algorithm to
perform a perimeter approximation using yardsticks of different size is described here.

For a given yardstick size λ  the perimeter is determined as follows. Starting at some
arbitrary contour point ( )x ys s,  the next point on the contour ( )x yn n,  in clockwise

direction is located which has a distance ( ) ( )d x x y yj s n s n= − + −2 2  as close as possible

to λ . This point is then used to locate the next point on the contour that satisfies this
condition. The process is repeated until the initial starting point is reached. The perimeter is
the sum of all distances d j  including the distance between the last located point and the
starting point. The average yardstick size is the sum of all distances d j  (excluding the

distance between the last located point and the starting point) divided by the number of
points found.

A C code for this technique is given below.

float PerimeterEstimation(contour, n, yardstick)
struct i_point* contour; /* contour's coordinates */
int n; /* number of points of the contour */
float* yardstick; /* yardstick to be used to estimate the perimeter */

{
/* local variables */
int starting_index = 0, current_index, last_index, index, nsteps = 0;
float distance = 0.0F, lastdistance, perimeter = 0.0F, step = 0.0F, temp;
BOOL AddLastLine;

/* is the contour valid? */
if (contour == NULL) return 0.0F;

/* index */
current_index = starting_index;
last_index = current_index;
index = current_index + 1;

/* perimeter estimation */
while (index != starting_index) {

lastdistance = distance;
distance = SQR(contour[current_index]->x - contour[index].x);
distance += SQR(contour[current_index]->y - contour[index].y);
distance = sqrt(distance);

if (distance < *yardstick) {
lasti_ndex = index;
index = (index + 1) % n;
AddLastLine = TRUE;
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continue;
}
if (ABS(distance - *yardstick) < ABS(lastdistance - *yardstick)) {

temp = distance;
current_index = index;
last_index = index;
index = (index + 1) % n;

}
else {

temp = lastdistance;
current_index = last_index;

}

perimeter += temp;
step += temp;
nsteps++;
distance = 0.0F;
AddLastLine = FALSE;

}

/* take into account the last part of the contour */
if (AddLastLine == TRUE) {

distance = SQR(contour[current_index]->x - contour[index].x);
distance += SQR(contour[current_index]->y - contour[index].y);
distance = sqrt(distance);
perimeter += distance;

}

/* average yardstick used to estimate the perimeter */
*yardstick = step / nsteps;
return perimeter;

}

C code 1.6.3. The function PerimeterEstimation requires a list of contour's coordinates, the
number of points on the contour and the yardstick size to be used to estimate the
perimeter. It returns the estimated perimeter and the average yardstick size used to
perform the estimation.

1.6.4. Contour filling and object labeling

One of the most common problems in computer analysis of images is finding the interior of
a region when its contour is given. In particle analysis this problem arises, for example, when
one needs to generate the particle's profile when its contour (a list of contour coordinates or
its chain code) is given, when there is a need to pick out one of the particles visible on an
image, to calculate the particle's area, etc. To solve these problems the following recursive
algorithm was developed.

Suppose, the contour of an object is drawn and a point P  inside the object's profile which is
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not yet marked as belonging to the interior of the object, is given (Fig. 1.6.8a). Moving in the
horizontal direction to the left the contour point L  which is the nearest to P , is found. In
the same manner, moving in the horizontal direction to the right, the other contour point R
which is the nearest to P , is located. It is evident that all points between L  and R  belong
to the interior of the object and they can be already labeled. Next, all points just below and
above of the labeled line belong either to the contour or to the interior of the object. Now
one of these points which belongs to the interior of the object but is not yet marked, is
considered as a point P  inside of the object's profile and the entire procedure is repeated
from the beginning. The algorithm allows to fill the interior for an object. With small
modifications it can be used to pick out the object or to eliminate it. Also this procedure is
used to calculate the area of an object.

PL R

Fig. 1.6.8. a) a point P  inside of the object and its two nearest contour points L  and R in
horizontal direction; b) the situation after the first call of the recursive filling procedure. The
points, marked as 'x' are used to call the function recursively.

A C code for this algorithm is given below.

long FillObject(image, the_x, the_y, oldcolor, newcolor)
struct rasterfile* image; /* a raster image */
int the_x, the_y; /* a point inside of the particle */
unsigned char oldcolor; /* present color of the particle's interior */
unsigned char newcolor; /* color to be used to fill the interior */

{
/* local variables */

a b
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int area = 0;
int lx, rx, x;
unsigned char pointcolor;

/* is the given point a correct one? */
if (!GetPset(image, the_x, the_y, &pointcolor) || (pointcolor != oldcolor)) return 0L;

/* initialization */
lx = rx = the_x;

/* find the nearest contour point form the left side */
while (GetPset(image, lx, the_y, &pointcolor) && (pointcolor == oldcolor))

--lx;
++lx;

/* find the nearest contour point form the right side */
while (GetPset(image, rx, the_y, &pointcolor) && (pointcolor == oldcolor))

++rx;
--rx;

/* mark the points between two found */
for (x = lx; x <= rx; x++)

SetPsetFast(image, (unsigned int)x, (unsigned int)the_y, newcolor);

/* area calculation */
area = rx - lx + 1;

/* check points below the labeled line */
if (GetPset(image, the_x, the_y+1, &pointcolor))

for (x = lx-1; x <= rx+1; x++)
area += FillParticle(image, x, the_y+1, oldcolor, newcolor);

/* check points above the labeled line */
if (GetPset(image, the_x, the_y-1, &pointcolor))

for (x = lx-1; x <= rx+1; x++)
area += FillParticle(image, x, the_y-1, oldcolor, newcolor);

return area;
}

C code 1.6.4. The function FillObject requires an image, the coordinates of a point inside of
the object, the color of the interior of the object and new color to be used to fill the interior.
The function returns the object's area.

1.6.5. Watershed segmentation of touching objects

A common difficulty in measuring images occurs when objects are touching and, therefore,
cannot be separately identified, counted or measured. One method for separation such
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objects is based on morphological erosion and dilation as shown above. Another method is
based on a variant of the watershed segmentation algorithm, especially designed for the
binary images [1.6.6]. The first step in the procedure is to create a distance map in which the
gray level is the measure of how far the corresponding binary pixel is from the background.
In a second step, the segmentation occurs along watersheds in the distance map.

To construct the distance map a few methods are available. The simplest one uses sequential
application of morphological erosion. The features in the image are sequentially eroded and
after each iteration all remaining pixels have their corresponding gray level value incremented
by one. When the process is completed the desired distance map has been constructed. An
example of such a map obtained for an image of touching objects (Fig. 1.6.9a) is shown in
Fig. 1.6.9b. The map was obtained using 8-connectivity to perform the erosion. Now,
imagine that the gray level values of each pixel in the distance map correspond to a physical
elevation. Then the objects are represented as mountain peaks and the total number of peaks
corresponds to the total number of objects in the image. As a first step in the watershed
segmentation the peaks are labeled as belonging to the resulting binary image and they form
the nuclei for subsequent feature growth by thickening. Thickening is performed in steps
starting at a height (brightness) value one less than the highest peak. At each height pixels
having this value, are candidates for thickening. They become a part of the binary image if
they do not create a new junction between any neighboring pixels. The operation is than
repeated at each next lover brightness level until no changes take place. Examples of
watershed segmented images are shown in Figs 1.6.9c and 1.6.9d. The difference between
these images is that different distance maps were used. For the image shown in Fig. 1.6.9c 8-
connectivity was used to generate the distance map (shown in Fig. 1.6.9b) whereas for the
image shown in Fig. 1.6.9d 4-connectivity was used. In both cases some imperfections are
observed. However for many practical applications the method was found to be appropriate.
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Fig. 1.6.9. a) a binary image of touching objects; b) the distance map obtained for the binary
image using the 8-connectivity rule; c) watershed segmentation performed using this
distance map; d) watershed segmentation performed using the distance map obtained with
the 4-connectivity rule.

a b

c d
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