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ABSTRACT 
In this case study, a data-oriented approach is used to visualize 

a complex digital signal processing pipeline.  The pipeline 
implements a Frequency Modulated (FM) Software-Defined 
Radio (SDR).  SDR is an emerging technology where portions of 
the radio hardware, such as filtering and modulation, are replaced 
by software components.  We discuss how an SDR 
implementation is instrumented to illustrate the processes 
involved in FM transmission and reception.  By using audio-
encoded images, we illustrate the processes involved in radio, 
such as how filters are used to reduce noise, the nature of a carrier 
wave, and how frequency modulation acts on a signal.  The 
visualization approach used in this work is very effective in 
demonstrating advanced topics in digital signal processing and is 
a useful tool for experimenting with the software radio design. 

 
CR Categories and Subject Descriptors: I.3.8 [Computer 

Graphics]: Applications; I.6.6 [Simulation and Modeling]: 
Simulation Output Analysis; I.6.8 [Simulation and Modeling]: 
Types of Simulation – visual; J.2.6 [Physical Sciences and 
Engineering]: Mathematics and Statistics. 

 
Additional Keywords: visualization metaphor, visualization of 

mathematics, radio, SDR. 

1 INTRODUCTION 
Radio engineers are experts at using visual tools to test and 

debug new radio designs.  Radio frequency (RF) test equipment, 
such as oscilloscopes and spectrum analyzers, are used to simply 
and effectively display the results of electronic signal 
measurements.  Such displays can be used in both a qualitative 
manner to provide an overall picture of the health of a signal, and 
in a quantitative one to provide detailed measurements of signal 
characteristics.  These tools are indispensable for designing and 
debugging radios. 

As modern radio designs evolve, however, many of the analog 
electronics of conventional radios are being replaced by digital 
hardware.  In the field of digital signal processing (DSP), 
numerical techniques are used to perform important radio 
operations such as modulation and demodulation.  Increasingly, 
the hardware used to perform the DSP is reprogrammable, so that 
the radio is essentially implemented in software.  Such a radio is 
called a software-defined radio (SDR). 

Unfortunately, RF test equipment cannot be used to probe and 
debug SDRs, as it cannot measure what is happening inside the 
software.  For radio engineers, however, the utility of signal 
measurement tools cannot be overstated; tools capable of visually 
displaying measurements of SDR signals are therefore critically 
important to the design and testing of SDR’s.  This is where 
software visualization comes in play.  Software visualization 

techniques allow us to continue to use visual information to probe 
and debug various processing stages in the digital processing 
pipeline.  In addition to providing the necessary tools for radio 
development, new types of displays can be built that may be used 
to aid in the development of specific radio applications, to 
investigate new DSP algorithms, or to provide educational 
visualizations of DSP techniques. 

The application presented in this paper provides an operational 
visualization of a complete FM SDR transceiver for the purposes 
of education.  We target the visualization to both a general 
audience, and students beginning their study of digital signal 
processing.  We would like to employ the engineer’s technique of 
looking at spectral information as it passes between the stages of a 
DSP pipeline, however the engineer’s tool, the spectrum analyzer, 
requires expertise to interpret correctly.  Also, while most people 
have some knowledge of musical notation, the concept of 
mapping audio information into the visual domain does not 
immediately occur to them.  In order to provide the audience with 
the necessary skills to interpret spectral data in the pipeline, we 
employ what we believe to be a novel didactic technique; we 
encode a recognizable image into the spectral information of an 
audio signal; when we later examine the output of a digital signal 
processing block, the effect of the block on the signal becomes 
apparent in how it transforms the image.  This technique also 
reduces the quantitative information provided by a spectrum 
analyzer without eliminating it.  It is still possible in our 
visualization to perform some useful quantitative measurements, 
such as counting sidebands, or finding frequency cutoffs.  
Therefore our visualization is not simply an intuitive introduction 
to SDR and DSP; it can be used to introduce students to empirical 
methods as well. 

The paper is organized as follows.  We first present an 
overview of software defined radio concept, and the hardware and 
software that we use to implement our design.  We then describe 
how we instrument the software for visualization purposes.  In 
order to associate the correspondence between audio signals and 
images, we invoke the metaphor of a player piano.  We then look 
in detail at how each stage of our software radio acts upon a 
simple signal.  We also take a closer look at FM modulation by 
varying an operational parameter and examining its effect upon a 
signal.  We conclude by examining an interactive 3D version of 
our visualization, and discussing future work. 

2 SDR OVERVIEW 

2.1 SDR Concepts 
In a conventional radio, all the signal processing functions, such 

as frequency translation, filtering, demodulation, etc., are 
implemented in analog hardware and therefore cannot be changed 
without altering the hardware design.  While this approach has 
proven to be practical for a very large range of applications, there 
are cases in which the ability to alter radio functionality at run-
time is highly desirable.  Interoperability with the existing legacy 
systems, ability to operate with region-specific communication 
standards, and readiness for future communication protocols are 
just a few examples when a reconfigurable system is desirable. 
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Recent development of digital signal processing techniques and 
increases in available computing power have made it possible to 
replace rigid analog signal processing hardware with 
programmable digital signal processing systems that are fast 
enough to satisfy the needs of high-rate signal processing in 
modern communication systems.  These developments have led to 
programmable and reconfigurable radios whose functionality can 
be changed in real-time by simply altering the software deployed 
on the system.  SDR is characterized as “a radio that is 
substantially defined in software and whose physical layer 
behavior can be significantly altered through changes to its 
software” [1]. 

In an ideal SDR receiver, the Analog to Digital Converter 
(ADC) directly converts a portion of the radio frequency spectrum 
to digital data, which is then processed (filtered, converted to 
baseband, and demodulated) by a digital signal processing system 
and passed as the system output.  Similarly, the ideal SDR 
transmitter consists of a DSP system that implements various 
signal processing functions (most notably, modulation) and a 
Digital to Analog Converter (DAC) that converts the DSP output 
to analog RF signal which is then radiated by the antenna.  In 
reality, this approach is feasible only at very low frequency (VLF) 
carrier frequencies due to the performance limitations and/or 
prohibitive cost of high rate ADC/DAC and DSP hardware.  
Consequently, a more practical implementation of an SDR 
transceiver includes a tunable analog RF front-end and analog 
down/up-conversion to/from an intermediate frequency (IF) 
acceptable by the ADC/DAC hardware.  Frequently, multiple 
stages of conversion and amplification occur (Figure 1) and 
additional filtering is needed between these stages.  In such a 
design, the RF front-end is used to tune the radio transceiver to a 
particular RF band and to amplify the RF signal whereas the 
actual RF signal processing (modulation and demodulation in 
particular) takes place in the digital domain. 

 

Tu
na

bl
e

R
F 

fro
nt

-e
nd ADC

DAC

RF

D
ow

n/
U

p
C

on
ve

rte
r 1

D
ow

n/
U

p
C

on
ve

rte
r 2

RF

IF1

IF1

IF2
digital
IF2

digital
IF2

data
out

data
in

an
te

nn
a

D
S

P

IF2Tu
na

bl
e

R
F 

fro
nt

-e
nd ADC

DAC

RF

D
ow

n/
U

p
C

on
ve

rte
r 1

D
ow

n/
U

p
C

on
ve

rte
r 2

RF

IF1

IF1

IF2
digital
IF2

digital
IF2

data
out

data
in

an
te

nn
a

D
S

P

IF2

 
Figure 1. Practical SDR architecture. 

2.2 GNU Radio 
While several commercial high-grade implementations of SDR 

systems are available [2], the prohibitively high cost and high 
degree of complexity make them inaccessible and impractical for 
most university researchers and students who are interested in 
studying and experimenting with SDR technology.  As a result, 
several simple lower-cost SDR implementations that either rely on 
a general-purpose computing platform or are based on an 
embedded DSP platform have been developed in the last few 
years.  The GNU Radio project [3] is a particularly good example 
because of its user community, members of which are actively 
engaged in both designing new hardware front ends, and 
providing software interfaces to existing devices.  The GNU 
Radio project consists of freely available software to enable the 
development of various radio configurations (such as an FM 
receiver [4]).  Furthermore, the GNU Radio project is 
implemented using familiar programming tools, such as C++ and 
Python, on the Linux operating system.  

GNU Radio provides a library of signal processing primitives 
implemented as C++ classes and the interface to link them 
together.  Any specific radio application is built by creating a 
graph where the nodes are signal processing primitives and the 
edges represent the data flow between them.  Conceptually, each 
primitive is designed to process an infinite stream of data flowing 
from its input port to its output port.  In addition to a fairly 
complete catalog of data processing primitives, the library 
provides a variety of data sources and sinks which allow 
communication with files, networks connections, sound cards, or 
ADC/DAC hardware.  These included components provide great 
flexibility for implementing software-defined radios.  

The GNU Radio software library provides several primitives 
that correspond to the radio engineer’s laboratory equipment.  The 
most practical primitive, which corresponds to a spectrum 
analyzer, is the GrFFTAvgSink (Figure 2).  The display shows the 
breakdown of a short length of signal into its constituent 
frequencies.  From this, one can find carrier frequencies, 
determine the signal-to-noise ratio, or measure a number of other 
signal characteristics. As stated in the introduction, for an 
experienced RF engineer this type of display is a powerful tool. 

In addition to supplying a broad range of DSP components, 
GNU Radio also provides a selection of working SDR 
applications, including a complete FM receiver [4].  The design 
provides a specification for the hardware front end that consists of 
a high-speed ADC, an RF tuner module, and an antenna.  With the 
hardware in place, one can successfully receive and demodulate 
broadcast FM signals. 

 
Figure 2. GNU Radio RF spectrum display. 

2.3 NCSA extensions to GNU Radio 
The GNU Radio software package is a capable digital signal 

processing library.  It lacks, however, hardware for transmitting in 
license-free radio bands (note that the original GNU Radio 
hardware design [3] provides only the receiver path).  Also, much 
of the candidate hardware for new GNU Radio applications tends 
to be quite expensive, discouraging potential users from 
experimenting with the package and constructing radios for real-
world experimentation.  Our recent efforts have extended the 
GNU Radio receiver design into a 900 MHz narrowband software 
defined radio transceiver [5].  The ability to transmit as well as 
receive makes it possible to develop and test new algorithms and 
protocols, to measure performance, and to provide a complete 
operational visualization. 

We use existing GNU Radio primitives and a custom primitive 
to implement our FM transceiver.  The structure of our SDR is 
shown in Figure 3.  The function of the blocks will be discussed in 
detail in sections 3.2 and 3.3 below, however we will provide a 
brief overview here.  The transmitter path (Figure 3) begins with 
the data source (VisRadioSource) which was developed 
specifically for this project.  It encodes a grayscale image, akin to 
a piano roll, into an audio signal for the purposes laid out in the 
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introduction.  Briefly, it does this by taking the inverse Discrete 
Fourier Transform of each raster line of the image; for details, see 
[5].  The VisRadioSource outputs a floating point signal at a 
sampling rate of 48,000 samples/sec (the maximum output rate of 
the sound card), which is fed to the FM modulator 
(etgFrequencyModulator).  This block was written by us because 
at the time, the GNU Radio project did not have a FM modulation 
primitive, though one is present in recent releases.  The modulator 
generates both in-phase (I) and quadrature (Q) baseband signals, 
which are passed along as a complex signal.  The modulated 
signal is mixed with a 12 kHz sinusoid (GrMixer).  It is then sent 
to the sound card (GrAudioSink).  The sound card is then 
connected with an audio cable to the NCSA narrowband 
hardware. 

A complete FM receiver is a bit more complex (Figure 3).  The 
NCSA narrowband hardware is connected to the sound card.  The 
signal is read by the sound card (GrAudioSource) and fed into an 
automatic gain control stage (GrAGC).  The signal is then passed 
to a 12 kHz. mixer (GrMixer) operating as a down-converter.  The 
signal passes through a low-pass filter (GrFIRfilterCCC) followed 
by the FM demodulator (VrQuadratureDemod) followed by a 
low-pass audio filter (GrFIRfilterFFF).  Typically, it is then sent 
to a sound card (GrAudioSink) where it can be listened to. 
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Figure 3. NCSA GNU Radio FM transceiver block diagram. 

3 SDR VISUALIZATION 

3.1 Visualization metaphor 
The block diagrams of the FM transmitter and receiver and the 

frequency-magnitude plot introduced in the previous section 
provide a useful description of how the radios work to someone 
familiar with the radio engineering, but provide little insight to the 
radio novice.  The diagrams reveal neither how each block 
functions, nor how the data passing through each block is 
transformed.  Ideally, one would like to see what happens to the 
signal at each processing stage, how its spectral characteristics 
change, how much bandwidth it occupies, how sampling rate 
affects its bandwidth, how each block’s internal parameters affect 
it, etc.  The frequency versus magnitude plot (Figure 2) is an 
excellent tool for the job, however due to the amount of 
quantitative information it provides, and the rapidity with which it 
changes, it requires training to properly interpret.  Instead, we use 

a variant of the frequency-magnitude plot called the spectrogram, 
which provides a less complicated view of a signal’s spectrum, 
and also preserves the signal history.  To motivate the use of a 
spectrogram to the viewer, we introduce it by employing the 
metaphor of an old-fashioned player piano. 

In a player piano, a roll of paper (known as a piano roll) is fed 
through the player piano mechanism, where tiny perforations in 
the paper use a simple mapping to control the notes played by the 
piano.  Holes on the left of the roll correspond to low notes and 
holes on the right correspond to higher notes.  The speed with 
which the roll is fed through the mechanism determines the 
music’s tempo.  In essence, a piano roll is much like a 
spectrogram in which the presence or absence of a hole in a 
certain column denotes the presence or absence of a specific 
frequency – i.e. it shows a binary amplitude.  The player piano 
analogy is not quite sufficient for our purposes; we need to be able 
to represent many more frequencies than a piano, and must also 
represent intermediate amplitudes as shades of gray.  The 
similarities, however, are adequate to provide the viewer with an 
intuitive metaphor. 

To visualize data as it flows through the radio, we examine the 
spectrum of the signal after it passes through each functional 
block; in essence, we treat each block as if it reads in a piano roll, 
performs an operation on it, and outputs another roll, which is 
then fed to the next block in the pipeline.  To provide this 
representation, we instrument the transmitter and receiver code 
with visualization taps, which can connect to the output of each 
functional block.  These taps do not affect radio function; they 
gather samples from their input, periodically create a line of a 
spectrogram from the gathered data, and then send the 
spectrogram via a TCP connection to a client.  In our 
visualization, the taps output a spectrogram approximately every 
1/24th of a second (corresponding to 2048 samples acquired at the 
sampling frequency of 48 kHz).  The visualization tap includes a 
prescaler, and outputs a line of byte-sized data.  A client does not 
need to process the data further to assemble each line into a 
grayscale image of a piano roll.  Throughout this section, we will 
use a simple client to visualize the data.  At the end of the section, 
we will look at a more advanced client that embeds the data inside 
a functional block diagram. 

We also have the ability to add an audio tap at any point in the 
pipeline, which we do to sonify the output of a particular 
processing block. 

3.2 Visualizing the FM transmitter 
We begin by examining the radio as we transmit and receive a 

simple tune.  The image encoder that we describe in section 2.3 
acts like a software version of the player piano for our 
visualization.  We can feed our transmitter with an image similar 
to a piano roll; see Figure 4a.  Our software player uses sine 
waves to play the tune, and plays the image at a rate of 
approximately 12 rows per second.  If we listen to the signal at 
this point, we hear a rendition of Mary Had a Little Lamb, 
followed by a C Major chord.  We should point out that in order 
for signal features to be visible in print, we have thickened the 
lines of our input image.  When viewing the full size 
visualization, we use only a single column per pitch. 

The signal passes from the player through the FM modulator 
(Figure 4b).  We see that for the single notes, the modulator 
produces a pattern of overtones.  These patterns are fully 
described by a family of mathematical functions called the Bessel 
functions.  For the chord, the modulated signal is much more 
complex; it is obviously more than the sum of its component 
notes.  The important thing to note, however, is that frequency 
modulation spreads the frequency information across the 
spectrum.  This redundant information will be helpful when we 
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reconstruct a noisy signal, but is also requires greater bandwidth 
than does the unmodulated signal.  In the framework of our player 
piano metaphor, this means that we need many more keys on the 
piano to represent the modulated signal than to represent the 
original.  Our images, therefore, must be very wide.  Listening to 
the signal at this point, the notes in the tune are recognizable, but 
distorted by their overtones.  The modulated chord, however, 
sounds quite unlike its unmodulated counterpart. 

After frequency modulation, the signal is mixed with a 12 kHz 
carrier wave that simply shifts the signal to a higher frequency, or 
in our visualization, shifts the signal to the right (Figure 4c).  Note 
that this shift does not widen the spectrum.  Typically, this step is 
done to shift the base signal, such as an audio signal that spans a 
frequency range of 0 to 48 kHz, up to a radio frequency that can 
be efficiently transmitted by an antenna (often in the megahertz or 
gigahertz range).  In fact, the NCSA narrowband hardware used in 
this project includes a hardware 900 MHz mixer that does exactly 
that.  The reason we also perform this relatively small shift in 
software is not just for illustration.  Commodity sound cards for 
PCs typically do not output frequencies below 10 Hertz, since 10 
Hertz is below the threshold of human hearing.  After a signal is 
modulated, however, important information is carried at these 
lower frequencies.  If they are suppressed by the hardware, the 
original signal can not be accurately recreated.  Thus, we need to 
move the center of the modulated signal away from this 
“frequency hole”.  The frequency on which the signal is now 
centered is called the carrier frequency; we chose 12 kHz as our 
carrier frequency because it is easy to implement a fast and 
accurate mixer at 1/4th the sampling frequency, but we could have 
used an arbitrary value. 

Those unfamiliar with communication theory may be puzzled 
by the high and low frequency symmetry exhibited in Figure 4.  It 
is beyond the scope of this paper to explain why this symmetry 
occurs, for this we refer readers to [9].  However, in short, these 
"mirror frequencies" are a result of the discrete nature of the 
sampling process.  It is also worth noting that in Figure 4c, the 
high frequency components that are shifted above 48kHz wrap 
around into the low frequency portion of the spectrum.  Without 
going into too much detail, the mathematics of DSP dictate that 
any sampled signal can only represent frequencies less than or 
equal to the Nyquist frequency, defined to be half the sampling 
rate [9].  If a signal contains any frequency components higher 
than the Nyquist frequency, an effect called aliasing occurs, in 
which those high frequency components are mapped back below 
the Nyquist frequency.  In the case of our FM transmitter, we use 
an effective sampling rate of 96 kHz; thus the Nyquist frequency 
is 48kHz.  Consequently, when we shift the signal up to the 12 
kHz carrier frequency, those portions of the signal above 36 kHz 
which were shifted above 48 kHz are mapped back down into the 
0-12 kHz range.  This counterintuitive behavior does not occur in 
the continuous realm of analog radio; it is strictly a result of the 
mathematics of discretely sampled signals. 

Next, the signal is sent through the sound card to the NCSA 
narrowband hardware.  One subtlety of the modulation process 
not shown in the visualization is that our modulator produces a 
complex signal; that is, its output is of the form x+iy.  It is not 
necessary to produce a complex signal.  One can design an FM 
modulator to produce only real valued output (which would be 
simply the real valued component of the complex signal).  We 
produce the complex output, however, because by assigning the 
real component of the signal to the left speaker channel and the 
imaginary component to the right, we can use the full capacity of 
the sound card to provide more bandwidth than with a single 
channel.  In our analogy with a player piano, having the 
bandwidth of both channels available allows us to transmit a 
wider range of signals in the same way that having 88 piano keys 

instead of 44 allows us to play a wider range of music.  Before we 
can transmit, however, it is necessary to combine the two channels 
into a single analog signal; for this, the narrowband hardware uses 
a technique called quadrature mixing ([6],[7]).  At the same time, 
it shifts the signal up by 10.7 MHz.  A second hardware stage 
mixes the signal with a 900 MHz carrier wave (the same operation 
that we performed earlier in software) and passes the signal to the 
antenna so that it may be transmitted.  This quadrature mixing 
technique is not strictly necessary; if we didn’t want the extra 
bandwidth we could, in fact, send only the real component of the 
demodulated signal, mixed with a 12 kHz carrier, to the sound 
card.  The analog hardware could then (theoretically, at least) 
prepare this signal for broadcast in a single step by mixing it with 
a radio frequency carrier. 

 
Figure 4. The FM transmitter signal processing stages. 

3.3 Visualizing the FM receiver 
The FM receiver operates much like the transmitter in reverse, 

but it includes extra components to deal with signal decay and 
noise.  Figure 5 shows different stages in the signal-processing 
pipeline of the receiver.  In part a, (VisRadioSource-to-GrAGC 
path) we see the signal as we receive it from the sound card.  It is 
immediately apparent that although the input signal (Figure 5a) 
bears a resemblance to the transmitted signal, it is much weaker.  
In truth, this weakening can be attributed to the improper match 
between the input gain on the sound card and the input from the 
NCSA narrowband hardware, however this artifactual signal 
decay is used to illustrate a very real phenomenon: radio signals 
weaken in proportion to the inverse square of the distance from 
the transmitter.  The signal received by a radio 10 miles from a 
radio station, therefore, is hundreds of thousands of times fainter 
than that received by a radio 100 feet from a radio station.  The 
received signal therefore requires significant amplification, but 
such amplification (or gain) cannot be performed using a constant 
factor because the strength of the input signal can vary by orders 
of magnitude.  We must amplify the signal just enough to place it 
within a known range – this process is known as Automatic Gain 
Control (AGC). Generally, one must calculate the average power 
of the input signal over a short period of time, and then use that to 
determine the gain.  FM signals have constant amplitude, 
however, because all of the information they carry is contained in 
the frequency makeup of the signal.  AGC can be very simply 
implemented on a complex, frequency modulated signal by using 
DSP techniques.  By dividing each sample by its norm, we obtain 
a signal with a magnitude of one.  While the NCSA narrowband 
hardware has a built-in AGC stage, we also apply the software 
defined AGC to the incoming signal.  Figure 5b shows the output 
of this operation.  We then shift the signal down in frequency by 
mixing it with another carrier wave.  This operation is almost 
identical to the one we performed in the transmitter; the difference 
is that we mix with a time-reversed 12 kHz wave.  From a visual 
perspective, this simply shifts the image to the left (Figure 5c). 

a

b

c
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After the signal has passed through the AGC and carrier 
removal stages, it is now evident that the signal contains a 
significant amount of noise.  Noise in an input signal comes from 
a variety of sources such as imperfections in the transmit/receive 
hardware, interference from other radio sources, and from natural 
background radiation.  It is not an exaggeration to say that the 
majority of effort in designing a radio is in reducing noise from a 
signal.  This is not a simple problem; there is no way to 
automatically decide whether part of a signal is information or 
noise.  From a visual perspective, we might ask if a gray pixel 
represents a note being played or a lightning strike miles away. 

Although there is no easy answer to this question, we can use 
our knowledge about the type of signal being sent to reduce noise.  
For instance, even simple visual inspection of our transmission 
pipeline reveals that almost all of the non-zero spectral 
information in the modulated signal lies between zero and 12 kHz.  
We can therefore reasonably infer that any component of the 
signal above 12 kHz is almost certainly noise.  Another factor to 
consider is that there appears to be an artifact clearly visible at 12 
kHz in Figure 5c, perhaps due to the sound card hardware.  We 
can rid our signal of both a substantial amount of noise and the 
artifact merely by zeroing out all of the frequency information 
from 11.5 kHz on up in an operation called filtering.  We wish to 
remove all portions of the signal above a certain frequency.  We 
therefore employ a type of filter called a low-pass filter, which 
passes frequency information below a certain level called the cut-
off frequency.  As one can see in Figure 5d, low-pass filtering is a 
brute force technique because it is insensitive to whether or not 
the filtered high-frequency information is actually noise.  It also 
leaves unchanged noise in the lower part of the spectrum.  The 
substantial proportion of the noise eliminated by low-pass filtering 
reveals it to be a powerful technique, however.  For this reason, 
low-pass filtering and others of its kind (high-pass, band-pass, and 
band-reject filtering) are the tools most widely employed to 
eliminate noise. 

 
Figure 5. Signal processing stages in the FM receiver, with details 

of a sound-card artifact (c ), DFT leakage (d), noise 
reintroduced by modulation (e), and low-pass filter cutoff (d). 

The detail for Figure 5d exhibits a slight horizontal smearing 
between successive notes (see inset in Figure 4a for comparison).  
This artifact is purely visual, and is not audible in the sonification.  

It occurs due to the fact that the visualization is formed by taking 
the spectrum of the signal by taking the DFT of about 1/12th of a 
second of signal, in essence trying to recreate the piano roll from 
the signal.  As the transmitter and receiver are not synchronized, it 
is likely that when a note changes pitch that it does so in the 
middle of the 1/12th of a second interval.  Due to the mechanics 
of the DFT (this issue is known as DFT leakage [9]), this appears 
as a smear rather than as two distinct notes.  Adding some form of 
synchronization would be possible by modifying the transmitted 
signal, but would complicate the radio design.  We decided to 
keep the transmitter and receiver simple, and accept the artifact. 

After filtering, we demodulate the signal.  The result of this 
process is shown in Figure 5e.  At this point in the receiver, our 
original signal is clearly recognizable, but some noise is still 
present.  In fact, demodulation has introduced some noise into a 
previously filtered portion of the spectrum.  If we sonify this stage 
of the radio pipeline, this noise is clearly audible as hissing.  
Again, we employ knowledge of the original signal to help us 
reduce the noise.  Since the original signal contained only 
frequencies below 6 kHz, we pass the signal through a low-pass 
filter as before.  This time, however, we set the cut-off frequency 
to only 6 kHz.  The final result still contains some visible noise, 
and we can see the smearing artifact (Figure 5f).  Aurally, 
however, we have quite faithfully reproduced the input signal. 

In reference to our claim that our visualization allows 
quantitative techniques to be used, notice how easy it is to read 
the low-pass cut-off values from Figure 5 (d and f).  Our 
calibration bar is a bit coarse, but it is clear that the signal in 
Figure 5f falls off sharply just below 6 kHz. 

3.4 Using visualization to understand FM 
Now that we have successfully transmitted and received a 

simple tune, we can return to examine the frequency modulator.  
While the theory behind FM is beyond the scope of this work, a 
brief look at the real form of the equation for frequency 
modulation is in order [8]: 

))(cos()(
0
∫=
t

dssuktx  

Here, u is the input signal, x is the modulated signal, and k is a 
unitless parameter called the modulation index.  The modulation 
index controls how much bandwidth is used by the modulated 
signal, and can be estimated by using a formula known as 
Carson’s Rule [8].  To visualize the effect that changing the 
modulation index has upon the signal, we again transmit a “piano-
roll”.  This time however, we use the image in Figure 6 as our 
input.  The interpretation of the image is exactly the same as in the 
score for Mary Had a Little Lamb; when a dark pixel is 
encountered, a sine wave is played.  We can still listen to this 
signal, though doing so is unpleasant.  For the sake of space, we 
will show only four stages of the radio pipeline: the original 
source, the modulated signal, the received signal immediately 
before it is demodulated, and the final, filtered signal.  These 
stages correspond to Figure 4 (a and b), and Figure 5 (d and f). 

 
Figure 6. Original image. 

Figure 7 shows these four image signals using a modulation 
index which we found empirically to produce the best quality 
transmission.  One can see the ghosts of the original image in the 
modulated signal; these are often referred to as significant 
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sidebands, and they correspond to the overtones we saw in our 
earlier visualization.  The demodulated signal is a clear and 
accurate recreation of our original image. 

 
Figure 7. Illustration of an adequate modulation. 

 
Figure 8. Illustration of insufficient modulation. 

 
Figure 9. Illustration of overmodulation. 

In Figure 8, we see what happens when the modulation index is 
reduced by a factor of 10.  The modulated signal looks much like 
the original image except for the fact that it is dim and fades a bit 
on the right side.  No other significant sidebands are present.  If 
we look at the signal on the receive side, right before it is 
demodulated (Figure 8), we find that the intensity of the 
modulated signal is not significantly stronger than the intensity of 

the noise, and thus we should not be surprised that the 
demodulated signal is quite noisy. 

Increasing the modulation index does increase the noise 
immunity, but the modulation index cannot be increased without 
bounds.  Figure 9 shows what happens when we increase the 
modulation index by a factor of 10.  For purposes of illustration, 
we have removed the first low pass filter from the receiver and 
transmitted the signal under low noise conditions.  With the filter 
in place, the central portion of the modulated signal would be 
discarded, resulting in even more distortion of the demodulated 
result.  Even without the filter, the high modulation index leads to 
a large number of significant sidebands. The higher frequency 
sidebands begin to interfere with their symmetric counterparts 
which we remarked upon in Section 3.3 above.  As is evident in 
Figure 9, when this occurs, the signal can no longer be 
demodulated successfully. 

4 DISCUSSION AND FUTURE WORK 
Studying RF engineering concepts has always been a difficult 

task for students as it involves advanced mathematics and a lot of 
hands-on experiments.  Students have to validate the 
mathematical equations or derive new relations based on 
experimental observations.  The use of various software-based 
simulation tools, such as Matlab provides a great deal of help, but 
these tools are not as intuitive as one might wish.  On the other 
hand, the visualization tool presented in this paper allows linking 
an implementation of a real RF design with a familiar visual 
metaphor that is informative and easy to understand.  We are 
investigating how to include other forms of visualization, and 
especially interaction, to make the current tool more complete and 
engaging to use. 

The proposed process visualization approach is based on the 
idea of visualizing spectral data in order to understand the 
process.  We transmit images encoded as spectral data so that 
visual patterns are easily perceptible.  In our current 
implementation, we focus on the qualitative data, and reduce the 
quantitative data.  However, the latter is important for judging the 
quality of performance of individual components in the SDR 
pipeline.  We are investigating how to integrate this type of data 
into the plots in a way that can enhance the visualization.  For 
instance, we have investigated the use of color in our 
visualizations for such a purpose.  Figure 10 shows an early 
example in which what is perceived to be signal noise is shown in 
gray whereas the actual signal is shown in color.  We carefully 
adjust the border between the brightest gray level corresponding 
to the highest noise value and the darkest shade of blue 
corresponding to the lowest level of a useful signal so that the 
noise does not appear more intense then the signal.  Such a color-
enhanced spectrogram provides a more intuitive illustration of 
what constitutes the signal and what belongs to the noise floor and 
what portion of the spectrum is occupied by the useful signal vs. 
noise whereas this distinction is not clear in Figure 5b.  We are 
investigating what other signal characteristics can be mapped into 
color as well as the use of other color scales. 

 
Figure 10. Experimenting with color. 
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We are interested in creating a more metaphorical 3D 
visualization that will convey the narrative of the radio's 
operation, particularly to an uninitiated audience, and will enable 
to embed more information about the radio operation than the 2D 
functional block diagram.  We have developed a 3D Visible Radio 
client, called SDRVis, which is a refinement of the functional 
block diagram.  In SDRVis, the edges representing links between 
blocks are widened into broad paths, upon which the spectrograms 
scroll from source to destination (Figure 11).  Wedges represent 
DSP primitives, and correspond to the blocks of the functional 
block diagram.  Signals in intermediate blocks are buffered, so 
that a signal appears to scroll into a functional block, be modified, 
and its output scrolls out, rather than appears at the output of all 
stages simultaneously.  One may navigate closer to areas that one 
wished to inspect; Figure 12 shows a close-up of the 
demodulation block of the receiver.  Note how shadows in the 
background allow the viewer to see the functional block diagram 
of the SDR at all times.  Figure 12 also shows that the Visible 
Radio is also able to transmit and receive grayscale images with a 
good degree of fidelity. 

 
Figure 11. NCSA GNU Radio FM receiver in 3D. 

 
Figure 12. A detailed view of the demodulator node. 

The 3D Visible Radio was created using a 3D animation 
program called Maya.  A custom Maya plug-in performs the 
layout of the 3D block diagram automatically at start-up and 
allows buffered signal data to be sent to the real-time visualization 
client over a socket. 

Besides serving as a good educational tool, the existing 
visualization software has other applications.  However, current 
implementation requires a manual inclusion of data taps in the 
SDR code and a manual setup of the visualization client.  We are 
investigating how the SDR code can be automatically 
instrumented with the data probing taps and how the visualization 
client can reconfigure itself for a new chain of SDR processing 
blocks.  This is particularly of interest with the latest version of 
the GNU Radio code that allows a dynamic modification of the 
data processing pipeline. 

So far we have implemented FM radio visualization with only 
one parameter adjustable (FM modulation constant).  We are 
investigating how other radio characteristics can be controlled 
interactively and their effects on the radio performance visualized.  
We are also looking into implementing other types of radio 
designs, such as Amplitude Modulated (AM) radio, data modem, 
etc.  An assortment of such radio modalities available for 
visualization could be a useful tool in studying and comparing RF 
designs by the EE students.  We are interested in integrating our 
Visible Radio project into introductory RF and DSP design 
courses offered to the EE students.  This, however, will require a 
development of a more comprehensive SDR visualization toolkit. 
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