
 1

Mapping a Sensor Interface and a Reconfigurable
Communication System to an FPGA Core

Volodymyr Kindratenko1 and David Pointer

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

405 N. Mathews Ave.
Urbana, IL 61801, USA
Phone: (217) 265-0209
Fax: (217) 244-2909

Email: kindr@ncsa.uiuc.edu

Received: April 1, 2005
Accepted: April 11, 2005

ABSTRACT

In this short communication, we present a novel approach for integrating a standard sensor
interface and a reconfigurable wireless data communication channel on a single Field
Programmable Gate Array (FPGA) chip. In a traditional wireless sensor device, sensor and
communication electronics are built as separate components and their integration consists of
designing a board to accommodate multiple integrated circuits (ICs). In contrast, the FPGA core
allows us to put a standard I²C sensor interface, embedded Digital Signal Processing (DSP)
algorithms for Software-Defined Radio (SDR), and a microprocessor control system on a single-
chip reconfigurable device. In our experimental FPGA-based sensor platform, the I²C interface
is used both to receive data from the temperature sensor and to control the analog Radio
Frequency (RF) transceiver board. Amplitude Shift Keying (ASK) modulation and
demodulation are implemented using DSP techniques within an SDR framework, and the
microprocessor system is used to read sensor data and control various components. The
prototype design was deployed on a Nallatech development board containing a Xilinx Virtex
2V3000 FPGA chip and was successfully tested with Dallas Semiconductor DS1721 digital
temperature sensor. One instance of the prototype transmitted the temperature red by the sensor
while second instance acted upon the received over the air temperature readings by turning LED
on or off.

Keywords: Electronic interfaces and data processing; Sensor signal processing electronics;
Sensor platform; Field Programmable Gate Array (FPGA); Software-defined radio (SDR).

1 To whom correspondence should be addressed (kindr@ncsa.uiuc.edu)

Sensor Letters, 2005, vol. 3, no. 2, pp. 174-178.

 2

TEXT
In a wireless sensor network, sensor systems require some type of wireless data communication
fabric. While many examples of wireless sensor devices exist, such as the Berkeley Motes1,2,
these devices have a fixed radio subsystem and a fixed sensor interface that cannot be altered
after the system is realized in hardware. We envision a programmable Software Defined Radio3
(SDR) coupled with a standard sensor data bus and a microprocessor system – all implemented
on a single Field Programmable Gate Array4 (FPGA) core – which yields a flexible wireless
sensor platform. For such a device, the target application space drives the sensor interface and
communication channel characteristics, not the other way around. In this letter, we present a
prototype of such a system, the Extensible Sensor Platform (ESP). The concept of FPGA-based
ESP was first introduced in our conference paper5 that focuses primarily on the SDR
implementation on FPGA. In this letter, we report on the complete system and provide results of
field tests using temperature sensor. We first describe the hardware components used to develop
and test ESP prototype. Next, we describe in details the FPGA implementation followed by
experimental results. Finally, we discuss lessons learned and future work directions.

ESP hardware prototype consists of a Xilinx Virtex 2V3000 FPGA, analog and digital domain
converters, analog radio frequency (RF) front-end, and an I2C sensor and control bus. We chose
the Nallatech XtremeDSP Development Kit6 to host the ESP design. The kit consists of two
printed circuit boards, i) the BenONE, the host board that provides I/O expansion, power,
programmable clock generation, USB interface for FPGA programming file download, and other
support hardware, and ii) the BenADDA, the core of the ESP implementation containing two 65
Mega-Sample-Per-Second (MSPS) ADC devices, two 160 MSPS DAC devices, a Xilinx Virtex
2V3000 user FPGA and a Xilinx Virtex 2V80 ADC/DAC clock generation FPGA (Figure 1).

The RF front-end hardware design (Figure 2) is based on the Maxim Integrated Products
MAX2460 900 MHz image-reject transceiver IC7. This RF front-end was originally designed
for use by the National Center for Advanced Secure System Research (NCASSR) Software-
Defined Radio Project8. The MAX2460 utilizes conventional analog mixing to downconvert a 4
MHz-wide block of 900 MHz spectrum to an intermediate frequency (IF) block centered at 10.7
MHz. For transmission, a 10.7 MHz IF input is upconverted to 900 MHz. The tuning range
covers the 902-928 MHz U.S.-unlicensed Industrial-Scientific-Medical (ISM) band. Control of
the MAX2460 is provided by I2C devices on a shared bus.

We chose the Phillips Semiconductors I2C standard9 for interfacing with sensors and actuators.
I2C is a ubiquitous, simple two-wire (clock and data) bi-directional bus, works well with hybrid
5 volt and 3.3 volt systems10, and is well-supported by many sensor manufacturers. Another
factor that led us to choose the I2C bus over other sensor interfaces is that the RF front-end
tuning and gain control devices used in our design support an I2C interface. We chose to operate
the I2C bus at the slower 100 KHz rate and with the older 7 bit addressing since these parameters
are supported by more sensors than the new 400 KHz rate and 10 bit addressing.

The actual ESP FPGA implementation (Figure 3) contains the digital Amplitude Shift Keying11
(ASK) transmitter and receiver, built from high-level DSP block libraries provided by Xilinx,
and a microprocessor subsystem, including an I2C master controller, built from Xilinx soft core

 3

Intellectual Property (IP) designs. In short, everything in the system that is digital fits into the
FPGA. The analog and digital domain converters, the analog RF front-end, and the actual
sensors are all external to the FPGA.

We use Simulink from Mathworks12, Xilinx System Generator and Xilinx Platform Studio13
tools to create the ESP FPGA design. The VHDL14 files automatically generated from the
Simulink Xilinx block model by System Generator for DSP serve as input files to the Xilinx
Integrated Synthesis Environment (ISE) tool. The ISE tool is central to the FPGA design tool
flow. It takes input from System Generator for DSP, manually created VHDL source code and
the Xilinx Platform Studio tool and generates a single programming bit file for the target FPGA
hardware. The Nallatech FUSE software is used to download the FPGA programming bit file
into the XtremeDSP Development Kit hardware.

As it was said earlier, everything in the system that is digital fits into the FPGA: a
microprocessor subsystem, the I2C master controller, ASK transmitter and receiver. The FPGA
hardware is programmed to execute all these tasks as they would be implemented by separate
hardware components. The microprocessor subsystem (Figure 4) controls the ASK SDR
transmitter, the I2C controller, and decodes the bit stream provided by the SDR receiver. All of
the blocks in the microprocessor subsystem are Xilinx IP soft core designs. Two timers are used
in our design: one is used to provide a sensor sampling timer, the second timer provides a bit
timing reference for ASK data. The I2C controller is attached to external I2C sensors as well as
the control devices for the RF front-end. The microprocessor subsystem and the SDR receiver
and transmitter are all clocked at 25 MHz. The 25 MHz system clock is also routed through the
2V3000 FPGA to the 2V80 FPGA on the BenADDA. The 2V80 FPGA is designed to generate
the differential clocks that the DAC and ADC require.

Amplitude Shift Keying digital data transmission11, in its simplest form, uses a transmitter
carrier-on condition of duration t to represent a digital logic ‘1’ and a transmitter carrier-off
condition of duration t to represent a digital logic ‘0’. The Double Sideband (DSB) form of

ASK is represented by [] ttmAts cωcos)(1
2

)(+= where)(tm is the modulating signal (-1 or 1),

A is the amplitude, and cω is the carrier frequency in radians.

In order to improve the ASK receiver’s ability to discriminate between carrier-off representing a
logic ‘0’ and carrier-off representing a transmitter turned off, the digital bits are encoded. In this
design, a “sub-bit-time” is 375 micro-seconds. Six sub-bit-times make one bit-time. Given these
timings, the digital data bits are encoded15 as shown in Figure 5. In order for an ASK receiver to
synchronize with an ASK transmitter, a synchronization bit pattern (“sync”) is defined and sent
out by the transmitter immediately before the encoded data bits. In our design, the sync pattern
shown in Figure 5 is used.

The Simulink model of the ASK Data SDR Transmitter consists of only a single device from the
System Generator for DSP block set: a Direct Digital Synthesizer (DDS). When enabled, the
DDS generates a 10.7 MHz digital sinusoid that is input to the BenADDA DAC. The DDS
enable line is controlled directly by the Microblaze microprocessor.

 4

Figure 6 shows a block diagram of the ASK Data SDR Receiver. The digitized 10.7 MHz IF is
downconverted to baseband and the sample rate is reduced by a factor of 50. The receiver uses
non-coherent detection by applying an absolute value type of envelope detector to the fixed point
data stream. The output of the detector is presented to a low pass filter, which detects the
presence or absence of signal energy. With 00 =s and tAs cωcos1 = , the output of the filter at

the sampling time T is
2

)()(
2

0

2
11

TAdttsty
T

== ∫ and 0)(0 =ty where A is the amplitude, and

cω is the carrier frequency in radians11. The output of the low pass filter is sampled, and a
detected energy level below a set threshold is a logic ‘0’ and a detect energy level below a set
threshold is a logic ‘1’. The recovered data bit stream is input to the microprocessor subsystem.

The first prototype of an ESP system can read and transmit sensor data to a receiver, which
serves as a proof of concept for our FPGA-based sensor interface and reconfigurable
communication system. The complete design occupies less than 40% of the Virtex 2V3000
FPGA’s resources and could support a 63 MHz clock, which meets the timing requirements of
the actual 25 MHz system clock. Below we present measurement results to validate our design.

A Dallas Semiconductor DS172116 digital temperature sensor generates sensor data for testing.
Every 2 seconds, the most significant 8 bits of temperature data are read by the transmitting
ESP’s microprocessor, encoded and transmitted. Reading the sensor data from the I2C bus takes
approximately 400 µs. Transmitting the synchronization bit pattern and 8 bits of sensor data
takes approximately 23 ms. The receiving ESP’s microprocessor is constantly scanning for the
rising edge of a sensor data message’s first synchronization bit. Once that is detected, the
message is read in approximately 23 ms, the synchronization pattern is checked, the temperature
data decoded, and an LED is turned on or off based on a preset temperature threshold.

The ASK data SDR transmitter waveform is of little interest as it is simply a 10.7 MHz sinusoid.
However, tracing the waveforms through the ASK data SDR receiver (Figure 6), starting at the
ADC output, allows us to verify and validate the ASK receiver design. Figure 7a shows the
reception of the first 5 bits of the synchronization bit pattern (10110) starting near 1.1 ms. At
this resolution, the digitized 10.7 MHz IF appears as solid vertical bars in the figure. After
passing through the frequency downconverter, the digitized 10.7 MHz IF waveform is mixed
down to baseband (50 KHz in this design). Since the sampling rate of the mixer is the same as
the ADC (25 MHz), the baseband signal appears in Figure 7b as a 50 KHz sinusoid
superimposed on the higher frequency mixer products. The decimation stage has the effect of
reducing the sampling rate from 25 MHz to 500 KHz, which filters out most of the higher
frequency mixer products (Figure 7c). The decimation stage also reduces the required clock rate
of down-stream parts of the receiver. This has the effect of reducing the number of required taps
for a defined filter response, relaxing logic timing requirements, and reducing FPGA power
consumption. The receiver’s envelope detector simply multiplies its input by -1 if the input is
less than 0, or multiplies its input by 1 of the input is greater than or equal to 0. This has the
effect of giving the input an offset of 1 and converting the input to positive integers. The output
from this operation may be seen in Figure 7d. The output of the receiver’s envelope detector still
contains some significant frequency components above baseband which are further filtered out

 5

by the order 50 equiripple FIR lowpass filter. Figure 7e shows the resulting filtered output. The
filter output is squared up and restricted to magnitudes between 0 and 1 by a simple threshold
detector in the bit decision block. The output of this detector becomes the binary bit input to the
microprocessor (Figure 7f). Thus, at the end of the ASK receiver sensor data bits are recovered
and passed to the microprocessor for interpretation.

So far, we addressed the issue of integrating sensing, processing and communication into a
reconfigurable FPGA core to serve as a software-reconfigurable wireless sensor platform.
Although the first prototype functioned as we expected, much needs to be done to convert it into
a true wireless sensor platform. Perhaps the most critical issue that we even have not begun to
address is power consumption. FPGA’s high degree of flexibility comes at a high power
consumption cost. High-performance ADC and DAC used in our design are very significant
power consumers as well. It is very likely however that the FPGA-based wireless sensor
platform will not allow us to reach power consumption levels present in ASIC-based designs,
such as the Berkeley Motes. For example, our FPGA uses 733 mW of power, the ADC 1300
mW, and the DAC 250 mW. This yields 2283 mW of power consumption without including the
analog radio components or sensors. By contrast, one version of the Berkeley Motes, the Mica,
uses 100 mW of power in active mode22, including the processor, sensors, and radio.

Much needs to be done before the developed prototype can be converted into an integrated
single-board design suitable for mass-production. For a first step in this direction, we currently
plan to move the ESP off its current prototype development hardware host onto a tightly
integrated, minimal chip count board design that also takes in to account power management and
power consumption constraints.

Current design allows to send sensor data and to act on the received data (e.g., turn on an LED),
but such a simplistic functionality is not sufficient. More general microprocessor functionality is
needed to enable a more general ESP functionality, which is closely related with the need to
make the ESP easier to program and use. As part of this effort, we plan to implement various
common DSP and control functional blocks in FPGA that may be parameterized and connected
together via high level commands. A set of interpreted commands will allow a programmer to
select radio and command functional blocks (objects) already present in an FPGA. The GNU
Software Radio project17 provides one example how such a configuration protocol can be
implemented. An alternative approach may be to implement a subset of the Software Control
Architecture18 (SCA) developed by the U.S. Department of Defence Joint Tactical Radio System
(JTRS) project19. In principle, any medium access control (MAC) protocol can be programmed
as part of FPGA’s functionality, but we have not investigated this issue in the framework of our
existing ESP design.

The analog RF front-end hardware used in the ESP prototype is limited to specific regions of the
RF spectrum by design. This inflexibility is addressed in the ESP by allowing any analog RF
front-end hardware to work with the ESP as long as it can produce a 10.7 MHz IF.

True plug-and-play sensor flexibility cannot be easily achieved with I2C interface. We plan to
investigate the proposed IEEE 1451.4 standard20,21 for use in the ESP as an additional sensor
interface.

 6

Most of our difficulties, while developing the prototype, were rooted in the development tool
environments. The tool vendors seem to imply that little or no hardware or FPGA design
experience is necessary; that there is no need to be concerned about the details of FPGA
implementation. This was mostly true as long as a design did not stray outside the bounds of a
single tool set. If separate tool sets were used to implement a design, the complexity of
combining the sub-designs is difficult to manage and actually does require delving into the
FPGA implementation details. Another source of difficulty is that FPGA design has a different
conceptual modality than software design. An FPGA is not like a computer with seemingly
limitless resources – the FPGA target has a very constrained and limited set of specific
resources. A developer with a pure software background needs to understand and adopt the
limitations peculiar to FPGA design.

ACKNOWLEDGMENT
This work was performed at the National Center for Advanced Secure System Research funded
by the Office of Naval Research (ONR) grant N00014-3-1-0765. The authors would like to
thank Paul Zawada for his 900 MHz transceiver design.

REFERENCES
1. J. Hill and D. Culler, A wireless embedded sensor architecture for system-level optimization,

Technical report, Computer Science Department, University of California at Berkeley
(2002).

2. J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D.C.K. Pister, System architecture directions for
networked sensors, Proceedings of ACM SIGMOD, San Diego, CA, June 2000.

3. J. Reed, Software Radio, Prentice Hall PTR, Upper Saddle River, NJ (2002).
4. W. Wolf, FPGA-Based System Design, Prentice Hall PTR, Upper Saddle River, NJ (2004).
5. D. Pointer, V. Kindratenko, P. Zawada, and M. Pant, The extensible sensor platform,

Proceedings of Software Defined Radio Technical Conference, Phoenix, AZ (2004), Vol.
A, pp. 201-205.

6. Nallatech XtremeDSP Development Kit, http://www.nallatech.com/.
7. MAX2420/MAX2421/MAX2422/MAX2460/MAX2463 900 MHz Image-reject

Transceivers, Maxim Integrated Products, Sunnyvale, CA (2003).
8. A. Betts, M. Hall, V. Kindratenko, M. Pant, D. Pointer, V. Welch, and P. Zawada, The GNU

Software Radio Transceiver Platform, Proceedings of Software Defined Radio Technical
Conference, Phoenix, AZ (2004), Vol. C, pp. 41-46.

9. Phillips Semiconductors, The I2C Bus Specification, Version 2.1 (2000).
10. Philips Semiconductors, Bi-directional level shifter for I2C bus and other systems,

application note AN98055 (1997).
11. D. Smith, Digital Transmission Systems, 2nd ed., Van Nostrand Reinhold, New York (1993).
12. Simulink® Model-Based and System-Based Design: Using Simulink Version 5, The

MathWorks, Inc., Natick, MA (2003).
13. Xilinx Platform Studio Tool Suite, http://www.xilinx.com/.
14. IEEE Standard VHDL Language Reference Manual, IEEE Standard 1076-1993.
15. HT600/680/6207 318 Series of Encoders Data Sheet, Revision 1.10, Holtek Semiconductor,

Inc., Hsinchu, Taiwan (2003).

 7

16. DS1721 2-Wire Digital Thermometer and Thermostat Data Sheet, Dallas Semiconductor,
Inc., Sunnyvale, CA (2001).

17. GNU Software Radio Project: http://www.gnu.org/software/gnuradio/.
18. Software Communications Architecture Specification, Technical report, U.S. Army (1998).
19. Joint Tactical Radio System: http://jtrs.army.mil/.
20. Standard for a Smart Transducer Interface for Sensors and Actuators - Transducer to

Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS)
Formats, IEEE Standard 1451.2-1997.

21. A Smart Transducer Interface for Sensors and Actuators – Mixed-mode Communication
Protocols and Transducer Electronic Data Sheet (TEDS) Formats, Draft IEEE Standard
P1451.4.

22. M. Horton, D. Culler, K. PIster, J. Hill, R. Szewczyk, and A. Woo, MICA, The
Commercialization of Microsensor Motes, Sensors, April 2002, Vol. 19, No. 4, pp 40-48.

FIGURE LEGENDS
Figure 1. Nallatech XtremeDSP development kit architecture.
Figure 2. RF front-end diagram.
Figure 3. ESP System design.
Figure 4. Microprocessor subsystem design.
Figure 5. Bit encoding (top) and bit synchronization pattern (bottom).
Figure 6. ASK data receiver design.
Figure 7. a) receiver ADC output, b) receiver downconverter output, c) receiver decimation
output, d) receiver envelope detector output, e) receiver lowpass filter output, and f) bit decision
output.

 8

FIGURES

Xilinx XtremeDSP

User FPGA
Virtrex2 V3000-4

(BenADDA)

ADC/DAC Clock
FPGA

Virtrex2 V80-4
(BenADDA)

Programmable
Clocks, Support

Hardware, Download
Hardware
(BenONE)

Analog Devices
AD6644 ADC

65MSPS
2X

(BenADDA)

Analog Devices
AD9772A DAC

160MSPS
2X

(BenADDA)

2 Channels Analog In

2 Channels Analog Out

USB Control

Figure 1. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

MAX2460
900 MHz

Tranceiver
IC

RX

TX

Gain
Control
DAC IC

Tuning
Control
DAC IC

Digital
I/O IC

Tank

I2
C

 B
us

IF

IF
From BenADDA

DAC

To BenADDA
ADC

Figure 2. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

 9

FPGA

RF
Front-end

Analog to
Digital

Converter
(ADC)

Digital to
Analog

Converter
(DAC)

Microprocessor
Subsystem

ASK Data
Transmitter

ASK Data
Receiver

Sensor(s)

IF

IF

I2C bus

Figure 3. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

32-bit
Microblaze
Processor

32 KB RAM
Instructions
and Data

32-bit
Timers

(2X)

I2C Master
Controller

To/From
I2C Bus

To ASK
Data SDR

Transmitter

From ASK
Data SDR
Receiver

Figure 4. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

carrier-off

carrier-off

375uSsub-bit-time

2.25mSbit-time

logic ‘0’

logic ‘1’

carrier-on

carrier-off

carrier-on

carrier-on carrier-off carrier-off carrier-on

carrier-off carrier-on carrier-on

on off

375uS

on on off off on off on on off off on

4.875mS

Carrier State:

Figure 5. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

 10

Frequency
Downconverter 50 Envelope

Detector
Binary

Decision

To
Microprocessor

Subsystem

From
BenADDA

ADC

Figure 6. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

Figure 7. Title: Mapping a Sensor Interface and a Reconfigurable Communication System to an FPGA
Core

f e

d c

b a

