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Abstract 
 

We demonstrate an implementation of the two-

electron repulsion integrals code for the direct self-

consistent field calculations on a reconfigurable 

computer.  We analyze different strategies and 

optimization techniques necessary to port the code to 

SRC-6 reconfigurable computer and provide 

performance results for models using relatively 

uncontracted and highly contracted basis sets.  Our 

implementation achieves an order of magnitude 

performance improvement over the conventional 

microprocessor system when using highly contracted 

basis sets and only a factor of 2 performance 

improvement for models that use relatively 

uncontracted basis sets.  We also point out limitations 

of the SRC-6 reconfigurable computer that prevent 

using it for running ab initio quantum chemistry 

applications. 

 

1. Introduction 
 

Two-electron repulsion integrals remain the 

bottleneck in many of the ab initio molecular orbital 

(MO) or density functional theory (DFT) electronic 

structure codes.  For example, in direct self-consistent 

field (SCF) methods many millions of electron 

repulsion integrals are recomputed every SCF iteration 

and count for the vast majority of the execution time.  

Accelerating the calculation of two-electron repulsion 

integrals has been a subject of several recent studies 

with most notable results obtained on the graphical 

processing units (GPUs) [1].  In this study, we evaluate 

the suitability of reconfigurable computing (RC) based 

on field programmable gate arrays (FPGAs) for 

evaluation of (ss|ss) integrals over contracted s-

orbitals.  We start with a reference microprocessor 

implementation of the (ss|ss) integrals and implement it 

to run on SRC-6 MAP Series E processor using SRC 

Carte development tools.  We compare performance of 

our SCR-6 implementation with the performance of the  

 

 

reference C implementation and point out limitations 

of the FPGA-based systems for computing two-

electron repulsion integrals. 

 

2. Two-electron repulsion integrals 
 

Our goal is to calculate all two-electron repulsion 

integrals for a given set of basis shells.  The two-

electron repulsion integrals over contracted basis 

functions can be computed as 
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where 𝑁∗ is the contraction length, 𝑑∗∗ are contraction 

coefficients, and [𝑝𝑞|𝑟𝑠] are integrals evaluated over 

primitive basis functions.  Rys quadrature scheme for a 

two-electron Coulomb repulsion integral is used to 

evaluate primitive integrals  𝑝𝑞 𝑟𝑠  for Gaussian-type 

orbitals (GTO) basis sets [2].  In this initial 

implementation we only consider (ss|ss) integrals over 

contracted s-orbitals.  The general formula for 

primitive [ss|ss] integrals is as follows [3]: 
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where 𝛼𝑘  is the exponent and 𝐑   𝐤 is the atomic center 

of the k
th

 primitive basis function in the integral and 
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3. Reference C implementation 
 

Reference C implementation of the two-electron 

repulsion integrals evaluation code is straightforward:  

The four outer loops sequence through all unique 

combinations of electron shells: 

 

for (s1 = 0; s1 < totNumShells; s1++) 
    for (s2 = s1; s2 < totNumShells; s2++) 
        for (s3 = s1; s3 < totNumShells; s3++) 
            for (s4 = s3; s4 < totNumShells; s4++) 

 

For each such combination, the four inner loops 

sequence through all shell primitives: 

 

for (p1 = 0; p1 < numPrimitives[s1]; p1++) 
    for (p2 = 0; p2 < numPrimitives[s2]; p2++) 
        for (p3 = 0; p3 < numPrimitives[s3]; p3++) 
            for (p4 = 0; p4 < numPrimitives[s4]; p4++) 

 

Inside these four nested loops, primitive [ss|ss] 

integrals are computed via the above equations and are 

summed as follows: 

 

H_ReductionSum[s1,s2,s3,s4] += sqrt(F_PI * rho) *  
        I1*I2*I3*weight * Coeff1*Coeff2*Coeff3*Coeff4; 

 

In this reference implementation, contracted 

integrals are stored in memory for the follow-up use 

for constructing the Fock matrix necessary to solve the 

electronic time-independent Schrodinger equation.  We 

stop short of solving this equation as our main goal is 

to speed up the calculation of the two-electron 

repulsion integrals. 

 

4. SRC-6 reconfigurable computer 
 

The SRC-6 MAPstation used in this work consists 

of a commodity dual-CPU Intel Xeon board and one 

MAP Series E processor interconnected with a 1.4 

GB/s low-latency Hi-Bar™ switch [4].  The SNAP™ 

Series B interface board is used to connect the CPU 

board to the Hi-Bar switch. 

The MAP Series E processor contains two user 

FPGAs, one control FPGA, and memory.  There are 

six banks of on-board memory (OBM); each bank is 64 

bits wide and 4 MB deep for a total of 24 MB.  There 

is an additional 4 MB of dual-ported memory used for 

data transfer between the two FPGAs.  The two user 

FPGAs in the MAP Series E are Xilinx Virtex-II Pro 

XC2VP100.  The FPGA clock rate of 100 MHz is set 

from within the SRC programming environment. 

Code for SRC MAPstation is written in the MAP C 

programming language using the Carte programming 

environment [5].  The Intel C (icc) compiler is used to 

generate the CPU-side of the combined CPU/MAP 

executable.  The SRC MAP C compiler produces the 

hardware description of the FPGA design for our final, 

combined CPU/MAP target executable.  This 

intermediate hardware description of the FPGA design 

is passed to Xilinx ISE place and route tools to produce 

the FPGA bit file.  Finally, the linker is invoked to 

combine the CPU code and the FPGA hardware bit 

file(s) into a unified executable. 

 

5. SRC-6 implementation 
 

While the reference C implementation of the two-

electron repulsion integrals code is straightforward, 

porting it to the SRC-6 reconfigurable processor is a 

challenging task.  The challenge comes from the 

deeply nested structure of the code and the need for a 

large number of floating-point operations.  Note that 

similarly to [1] we restrict ourselves to using only 

single-precision floating-point arithmetic. 

 

5.1. Nested loops pipelining 
 

The Carte compiler attempts to pipeline only the 

innermost loop.  Even though all the arithmetic 

operations in the two-electron repulsion integral code 

can be enclosed in the innermost loop, simply 

pipelining it is not sufficient to achieve good 

performance.  Since the innermost loop resides deep 

inside seven other nested loops, it will be invoked a 

significant number of times, thus accumulating 

execution overhead due to the loop pipeline depth.  

The pipeline depth of the loop body, measured in 

number of clock cycles, is substantial due to the large 

number of sequentially executed arithmetic operations.  

Moreover, for relatively uncontracted basis sets, the 

innermost loop frequently has only a few iterations, 

thus providing very poor amortization of the pipeline 

depth overhead. 

A common approach to deal with the nested loop 

inefficiencies is to combine several such loops into one 

that can be pipelined by the compiler.  Ideally, one 

would want to combine as many—desirably all—loops 

as possible.  Combining all eight nested loops is not an 

option in our case for the following reason: In order to 

contract the primitive integrals in a manner that will 

allow loop pipelining, we need to use the floating point 

macro, fp_accum_32, available in the Carte floating 

point library.  This macro does not provide the final 

sum until we exit the pipelined loop.  However, we 

need to store multiple contracted integrals as we 

compute them, thus requiring access to the summed 

primitive integrals at will. 



 

 

A close examination of the code reveals that we can 

combine just four of the innermost loops since they are 

responsible for computing a single contracted integral 

value.  The fused loop will have nPrims[s1] * 

nPrims[s2] * nPrims[s3] * nPrims[s4] iterations and 

will compute a single H_ReductionSum[s1,s2,s3,s4] 

value.  Computing p1-p4 indexes for the four 

innermost nested loops is done using cg_count_ceil_32 

Carte macro in the usual way [5]. 

The resulting fused loop will still require four clock 

cycles per single loop iteration to complete – not an 

optimal implementation.  The four clocks per iteration 

are needed to access the coordinates of the four atoms 

needed to compute the primitive integral.  Since these 

coordinates are stored in a single-ported array, the 

compiler adds delays necessary to access the required 

data before all the calculations can be done.  This 

brings us to the data storage challenge. 

 

5.2. Data storage 
 

The data storage schema used in the reference C 

implementation is not appropriate for the MAP Series 

E implementation due to the OBM and BRAM 

memory layout and the limited amount of memory 

accessible from FPGA.  Therefore, before we can 

transfer the data to the MAP Series E processor, we 

need to re-shape it on the CPU. 

First, we copy all atom center coordinates into a 1D 

array and pad triplets of coordinates of each individual 

atom to 64 bits–the storage unit size of the OBM 

banks.  We then transfer this array to the MAP Series E 

processor and stripe it across two OBM banks.  These 

atom coordinates, stored in two on-board memory 

banks, will need to be accessed four times per loop 

iteration, thus leading to the loop slowdown by four 

clock cycles as discussed above. 

Similarly, basis shell primitives, which are already 

aligned to 64 bits, are transferred and stored in a single 

OBM bank.  They too will need to be accessed 4 times 

per the fused loop iteration. 

In order to eliminate the fused loop slowdown due 

to the OBM access delays, we make four identical 

copies of the atom coordinates and shell primitives to 

BRAM memory located directly in the FPGA and 

access data from BRAM instead of the original OBM 

banks.  Thus, at this point our fused loop becomes fully 

pipelined with one clock cycle per single loop iteration.  

An implementation with BRAM allocated for 128 

basis shells and 128 atoms uses up only 8% of the 

BRAM memory available on XC2VP100 FPGA. 

In addition to raw atom locations and shell 

primitives, we need per-'atom shell' descriptors that 

identify where atom coordinates and basis shell 

primitives are stored for a given atom shell.  These 

descriptors are assembled on the CPU, padded to 64 

bits, transferred and stored in a single OBM bank.  

This data is accessed once in each of the outer loops.  

However, since the outer loops are not pipelined, there 

is no need to duplicate the data for efficient access. 

 

5.3. Code optimization 
 

In the reference C implementation, Gauss error 

function, erf, is computed by expanding the integrand 

in a Taylor series.  In the general case, its evaluation 

requires up to 12 floating-point multiplication 

operations, up to 14 floating-point addition operations, 

floating-point division, exponent, and square root.  The 

exact polynomial used in evaluating this function 

depends on the value of t; in its current implementation 

sufficient for s-orbitals evaluation [6] it consist of eight 

special cases resulting in eight branches with 53 

floating-point multiplication operations alone.  The rest 

of the kernel contains 41 floating-point multiplications, 

12 additions, and four division operations as well as 

three exponent and two square root operations.  As 

such, this code poses a significant challenge for FPGA 

implementation. 

We restructured the Gauss error function 

implementation to eliminate the calculations in eight 

individual branches.  Instead, we pre-compute all 

commonly used parameters and for each of the eight 

cases fill in the corresponding polynomial coefficients 

and then apply a common equation at the end.  As the 

result, we were able to reduce the 53 floating-point 

multiplication operations to just 12.  Still, this 

implementation does not fit on a single chip and more 

aggressive optimizations are needed. 

Once such optimization is to use the smaller area 

floating-point library that is provided with the Carte 

development environment.  Floating-point operations 

implemented in this library require less logic to 

implement, but provide lower accuracy.  Another 

technique is to divide the calculations between the two 

FPGAs available in the MAP Series E processor.  In 

particular, 𝑑2 𝐴𝐵 (𝐴 + 𝐵) , erf function, part of the 

final equation, contracted integrals summation, and 

data storage code were moved to the secondary FPGA.  

Data exchange between the primary and secondary 

FPGAs is implemented via cross-FPGA bridge 

streams. 

The final dual-FPGA implementation occupies all 

slices on the primary FPGA, over 60% of slices on the 

secondary FPGA, and about 30% of the hardware 

multipliers available on two chips.  Pipeline depth of 

the fused loop on the primary chip is 209 clock cycles 

and additional 353 clock cycles on the secondary chip. 



 

 

6. Results and discussion 
 

We consider two test cases: a molecular system 

consisting of 10 water molecules (30 atoms in total) 

using cc-pVDZ basis set with only s-type functions 

taken into account and a molecular system composed 

of 64 hydrogen atoms arranged in a lattice using the 

STO-6G basis set.  The first model is an example of a 

relatively uncontracted basis set whereas the second 

model is an example of a highly contracted basis set. 

Table 1 summarizes performance results obtained 

while executing our reference C implementation and 

the SRC-6 Map Series E processor implementation.  

An obvious observation is that the speedup obtained 

for the model that uses a highly contracted basis set is 

substantially higher than for the model that uses a 

relatively uncontracted basis set.  The degree at which 

the basis set is contracted translates into the number of 

primitive integrals to be computed for each contracted 

integral.  In terms of the code execution profile, this 

corresponds to the number of iterations of the fused 

innermost loop.  In case of the highly contracted basis 

set, the innermost loop has a constant number of 

iterations per each invocation: 1,296.  In the case of the 

relatively uncontracted basis set, the number of 

iterations of the fused loop varies from 4,096 to just 1, 

or 168 iterations on average.  Since the overall 

execution time of this code is proportional to 𝑁(𝑛 + 𝑝) 

where N is the number of reduction elements, n is the 

number of innermost loop iterations, and p is the loop 

pipeline depth, the case of the highly contracted basis 

set, or when 𝑛 > 𝑝, makes a much better use of the 

innermost loop pipeline.  In other words, pipeline 

depth overhead is better amortized for the loops that 

have more iterations. 

 
 Model 1 Model 2 

# of atoms 30 64 

Basis set cc-pVDZ STO-6G 

# of integrals 528,569,315 2,861,464,320 

# of reduction elements 3,146,010 2,207,920 

SRC-6 host (sec) 70.55 518.90 

SRC-6 MAP E (sec) 25.42 42.85 

Speedup 2.8x 12.1x 

Table 1.  Performance results for two datasets. 

 

We also observe that in many cases numerical 

values of the integrals computed on the MAP Series E 

processor differ significantly from the results obtained 

while executing code on the CPU.  We observe that 

values of integrals that fall between 0.0001 and 0.1 are 

the same or very close to those computed on the CPU.  

However, integral values smaller than 0.0001 (as 

computed on the CPU) are almost always ―inverted‖ to 

appear as X∙10
+34

 or X∙10
+36

.  A plausible explanation 

for this may be the use of the smaller area floating-

point arithmetic library, which is less accurate than the 

standard floating-point library, but the use of which 

was necessary because of the limited FPGA resources. 

 

7. Conclusions 
 

Reconfigurable computing holds the potential for an 

order of magnitude speedup for the ab initio electronic 

structure codes.  However, current systems, such as 

SRC-6, are not yet capable of fully supporting such 

applications due to the limited size of FPGAs and the 

limitations in floating-point libraries.  The limited 

FPGA size translates into an inability to implement 

fully featured codes even for the simplest type of 

integrals.  The floating-point library limitations do not 

allow the implementation of a fully optimized code. 

The SRC-7 MAP Series H processor holds promise 

to overcome the space limitation as its Altera Stratix II 

EP2S180 FPGAs are substantially larger than those 

used in MAP Series E processors. 
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