

Evaluation of two-electron repulsion integrals over Gaussian

basis functions on SRC-6 reconfigurable computer

Volodymyr Kindratenko
1
, Ivan Ufimtsev

2
, and Todd Martínez

2

1) National Center for Supercomputing Applications, 2) Department of Chemistry

University of Illinois at Urbana-Champaign, Urbana, IL 61801

1) kindr@ncsa.uiuc.edu, 2) iufimts2@uiuc.edu, tjm@spawn.scs.uiuc.edu

Abstract

We demonstrate an implementation of the two-

electron repulsion integrals code for the direct self-

consistent field calculations on a reconfigurable

computer. We analyze different strategies and

optimization techniques necessary to port the code to

SRC-6 reconfigurable computer and provide

performance results for models using relatively

uncontracted and highly contracted basis sets. Our

implementation achieves an order of magnitude

performance improvement over the conventional

microprocessor system when using highly contracted

basis sets and only a factor of 2 performance

improvement for models that use relatively

uncontracted basis sets. We also point out limitations

of the SRC-6 reconfigurable computer that prevent

using it for running ab initio quantum chemistry

applications.

1. Introduction

Two-electron repulsion integrals remain the

bottleneck in many of the ab initio molecular orbital

(MO) or density functional theory (DFT) electronic

structure codes. For example, in direct self-consistent

field (SCF) methods many millions of electron

repulsion integrals are recomputed every SCF iteration

and count for the vast majority of the execution time.

Accelerating the calculation of two-electron repulsion

integrals has been a subject of several recent studies

with most notable results obtained on the graphical

processing units (GPUs) [1]. In this study, we evaluate

the suitability of reconfigurable computing (RC) based

on field programmable gate arrays (FPGAs) for

evaluation of (ss|ss) integrals over contracted s-

orbitals. We start with a reference microprocessor

implementation of the (ss|ss) integrals and implement it

to run on SRC-6 MAP Series E processor using SRC

Carte development tools. We compare performance of

our SCR-6 implementation with the performance of the

reference C implementation and point out limitations

of the FPGA-based systems for computing two-

electron repulsion integrals.

2. Two-electron repulsion integrals

Our goal is to calculate all two-electron repulsion

integrals for a given set of basis shells. The two-

electron repulsion integrals over contracted basis

functions can be computed as

 𝜇𝜈 𝜆𝜎 = 𝑑𝜇𝑝𝑑𝜈𝑞𝑑𝜆𝑟𝑑𝜎𝑠 [𝑝𝑞|𝑟𝑠]

𝑁𝜎

𝑠=1

𝑁𝜆

𝑟=1

𝑁𝜈

𝑞=1

𝑁𝜇

𝑝=1

where 𝑁∗ is the contraction length, 𝑑∗∗ are contraction

coefficients, and [𝑝𝑞|𝑟𝑠] are integrals evaluated over

primitive basis functions. Rys quadrature scheme for a

two-electron Coulomb repulsion integral is used to

evaluate primitive integrals 𝑝𝑞 𝑟𝑠 for Gaussian-type

orbitals (GTO) basis sets [2]. In this initial

implementation we only consider (ss|ss) integrals over

contracted s-orbitals. The general formula for

primitive [ss|ss] integrals is as follows [3]:

 𝑠1𝑠2 𝑠3𝑠4 =

𝜋3

𝐴𝐵 𝐴 + 𝐵
𝐾12 (𝐑 12)𝐾34(𝐑 34)𝐹0

𝐴𝐵

𝐴 + 𝐵
[𝐑 𝐏 − 𝐑 𝐐]2

where 𝛼𝑘 is the exponent and 𝐑 𝐤 is the atomic center

of the k
th

 primitive basis function in the integral and

𝐴 = 𝛼1 + 𝛼2, 𝐵 = 𝛼3 + 𝛼4, 𝐹0 𝑡 =
𝑒𝑟𝑓 𝑡

 𝑡
,

𝐑 𝐤𝐥 = 𝐑 𝐤 − 𝐑 𝐥, 𝐑 𝐏 =
𝛼1𝐑 𝟏+𝛼2𝐑 𝟐

𝐴
, 𝐑 𝐐 =

𝛼3𝐑 𝟑+𝛼4𝐑 𝟒

𝐵
,

𝐾𝑖𝑗 𝐑 𝑖𝑗 = 𝑒𝑥𝑝 −
𝛼𝑖𝛼𝑗

𝛼𝑖 + 𝛼𝑗
 𝐑 𝑖 − 𝐑 𝑗

2

3. Reference C implementation

Reference C implementation of the two-electron

repulsion integrals evaluation code is straightforward:

The four outer loops sequence through all unique

combinations of electron shells:

for (s1 = 0; s1 < totNumShells; s1++)
 for (s2 = s1; s2 < totNumShells; s2++)
 for (s3 = s1; s3 < totNumShells; s3++)
 for (s4 = s3; s4 < totNumShells; s4++)

For each such combination, the four inner loops

sequence through all shell primitives:

for (p1 = 0; p1 < numPrimitives[s1]; p1++)
 for (p2 = 0; p2 < numPrimitives[s2]; p2++)
 for (p3 = 0; p3 < numPrimitives[s3]; p3++)
 for (p4 = 0; p4 < numPrimitives[s4]; p4++)

Inside these four nested loops, primitive [ss|ss]

integrals are computed via the above equations and are

summed as follows:

H_ReductionSum[s1,s2,s3,s4] += sqrt(F_PI * rho) *
 I1*I2*I3*weight * Coeff1*Coeff2*Coeff3*Coeff4;

In this reference implementation, contracted

integrals are stored in memory for the follow-up use

for constructing the Fock matrix necessary to solve the

electronic time-independent Schrodinger equation. We

stop short of solving this equation as our main goal is

to speed up the calculation of the two-electron

repulsion integrals.

4. SRC-6 reconfigurable computer

The SRC-6 MAPstation used in this work consists

of a commodity dual-CPU Intel Xeon board and one

MAP Series E processor interconnected with a 1.4

GB/s low-latency Hi-Bar™ switch [4]. The SNAP™

Series B interface board is used to connect the CPU

board to the Hi-Bar switch.

The MAP Series E processor contains two user

FPGAs, one control FPGA, and memory. There are

six banks of on-board memory (OBM); each bank is 64

bits wide and 4 MB deep for a total of 24 MB. There

is an additional 4 MB of dual-ported memory used for

data transfer between the two FPGAs. The two user

FPGAs in the MAP Series E are Xilinx Virtex-II Pro

XC2VP100. The FPGA clock rate of 100 MHz is set

from within the SRC programming environment.

Code for SRC MAPstation is written in the MAP C

programming language using the Carte programming

environment [5]. The Intel C (icc) compiler is used to

generate the CPU-side of the combined CPU/MAP

executable. The SRC MAP C compiler produces the

hardware description of the FPGA design for our final,

combined CPU/MAP target executable. This

intermediate hardware description of the FPGA design

is passed to Xilinx ISE place and route tools to produce

the FPGA bit file. Finally, the linker is invoked to

combine the CPU code and the FPGA hardware bit

file(s) into a unified executable.

5. SRC-6 implementation

While the reference C implementation of the two-

electron repulsion integrals code is straightforward,

porting it to the SRC-6 reconfigurable processor is a

challenging task. The challenge comes from the

deeply nested structure of the code and the need for a

large number of floating-point operations. Note that

similarly to [1] we restrict ourselves to using only

single-precision floating-point arithmetic.

5.1. Nested loops pipelining

The Carte compiler attempts to pipeline only the

innermost loop. Even though all the arithmetic

operations in the two-electron repulsion integral code

can be enclosed in the innermost loop, simply

pipelining it is not sufficient to achieve good

performance. Since the innermost loop resides deep

inside seven other nested loops, it will be invoked a

significant number of times, thus accumulating

execution overhead due to the loop pipeline depth.

The pipeline depth of the loop body, measured in

number of clock cycles, is substantial due to the large

number of sequentially executed arithmetic operations.

Moreover, for relatively uncontracted basis sets, the

innermost loop frequently has only a few iterations,

thus providing very poor amortization of the pipeline

depth overhead.

A common approach to deal with the nested loop

inefficiencies is to combine several such loops into one

that can be pipelined by the compiler. Ideally, one

would want to combine as many—desirably all—loops

as possible. Combining all eight nested loops is not an

option in our case for the following reason: In order to

contract the primitive integrals in a manner that will

allow loop pipelining, we need to use the floating point

macro, fp_accum_32, available in the Carte floating

point library. This macro does not provide the final

sum until we exit the pipelined loop. However, we

need to store multiple contracted integrals as we

compute them, thus requiring access to the summed

primitive integrals at will.

A close examination of the code reveals that we can

combine just four of the innermost loops since they are

responsible for computing a single contracted integral

value. The fused loop will have nPrims[s1] *

nPrims[s2] * nPrims[s3] * nPrims[s4] iterations and

will compute a single H_ReductionSum[s1,s2,s3,s4]

value. Computing p1-p4 indexes for the four

innermost nested loops is done using cg_count_ceil_32

Carte macro in the usual way [5].

The resulting fused loop will still require four clock

cycles per single loop iteration to complete – not an

optimal implementation. The four clocks per iteration

are needed to access the coordinates of the four atoms

needed to compute the primitive integral. Since these

coordinates are stored in a single-ported array, the

compiler adds delays necessary to access the required

data before all the calculations can be done. This

brings us to the data storage challenge.

5.2. Data storage

The data storage schema used in the reference C

implementation is not appropriate for the MAP Series

E implementation due to the OBM and BRAM

memory layout and the limited amount of memory

accessible from FPGA. Therefore, before we can

transfer the data to the MAP Series E processor, we

need to re-shape it on the CPU.

First, we copy all atom center coordinates into a 1D

array and pad triplets of coordinates of each individual

atom to 64 bits–the storage unit size of the OBM

banks. We then transfer this array to the MAP Series E

processor and stripe it across two OBM banks. These

atom coordinates, stored in two on-board memory

banks, will need to be accessed four times per loop

iteration, thus leading to the loop slowdown by four

clock cycles as discussed above.

Similarly, basis shell primitives, which are already

aligned to 64 bits, are transferred and stored in a single

OBM bank. They too will need to be accessed 4 times

per the fused loop iteration.

In order to eliminate the fused loop slowdown due

to the OBM access delays, we make four identical

copies of the atom coordinates and shell primitives to

BRAM memory located directly in the FPGA and

access data from BRAM instead of the original OBM

banks. Thus, at this point our fused loop becomes fully

pipelined with one clock cycle per single loop iteration.

An implementation with BRAM allocated for 128

basis shells and 128 atoms uses up only 8% of the

BRAM memory available on XC2VP100 FPGA.

In addition to raw atom locations and shell

primitives, we need per-'atom shell' descriptors that

identify where atom coordinates and basis shell

primitives are stored for a given atom shell. These

descriptors are assembled on the CPU, padded to 64

bits, transferred and stored in a single OBM bank.

This data is accessed once in each of the outer loops.

However, since the outer loops are not pipelined, there

is no need to duplicate the data for efficient access.

5.3. Code optimization

In the reference C implementation, Gauss error

function, erf, is computed by expanding the integrand

in a Taylor series. In the general case, its evaluation

requires up to 12 floating-point multiplication

operations, up to 14 floating-point addition operations,

floating-point division, exponent, and square root. The

exact polynomial used in evaluating this function

depends on the value of t; in its current implementation

sufficient for s-orbitals evaluation [6] it consist of eight

special cases resulting in eight branches with 53

floating-point multiplication operations alone. The rest

of the kernel contains 41 floating-point multiplications,

12 additions, and four division operations as well as

three exponent and two square root operations. As

such, this code poses a significant challenge for FPGA

implementation.

We restructured the Gauss error function

implementation to eliminate the calculations in eight

individual branches. Instead, we pre-compute all

commonly used parameters and for each of the eight

cases fill in the corresponding polynomial coefficients

and then apply a common equation at the end. As the

result, we were able to reduce the 53 floating-point

multiplication operations to just 12. Still, this

implementation does not fit on a single chip and more

aggressive optimizations are needed.

Once such optimization is to use the smaller area

floating-point library that is provided with the Carte

development environment. Floating-point operations

implemented in this library require less logic to

implement, but provide lower accuracy. Another

technique is to divide the calculations between the two

FPGAs available in the MAP Series E processor. In

particular, 𝑑2 𝐴𝐵 (𝐴 + 𝐵) , erf function, part of the

final equation, contracted integrals summation, and

data storage code were moved to the secondary FPGA.

Data exchange between the primary and secondary

FPGAs is implemented via cross-FPGA bridge

streams.

The final dual-FPGA implementation occupies all

slices on the primary FPGA, over 60% of slices on the

secondary FPGA, and about 30% of the hardware

multipliers available on two chips. Pipeline depth of

the fused loop on the primary chip is 209 clock cycles

and additional 353 clock cycles on the secondary chip.

6. Results and discussion

We consider two test cases: a molecular system

consisting of 10 water molecules (30 atoms in total)

using cc-pVDZ basis set with only s-type functions

taken into account and a molecular system composed

of 64 hydrogen atoms arranged in a lattice using the

STO-6G basis set. The first model is an example of a

relatively uncontracted basis set whereas the second

model is an example of a highly contracted basis set.

Table 1 summarizes performance results obtained

while executing our reference C implementation and

the SRC-6 Map Series E processor implementation.

An obvious observation is that the speedup obtained

for the model that uses a highly contracted basis set is

substantially higher than for the model that uses a

relatively uncontracted basis set. The degree at which

the basis set is contracted translates into the number of

primitive integrals to be computed for each contracted

integral. In terms of the code execution profile, this

corresponds to the number of iterations of the fused

innermost loop. In case of the highly contracted basis

set, the innermost loop has a constant number of

iterations per each invocation: 1,296. In the case of the

relatively uncontracted basis set, the number of

iterations of the fused loop varies from 4,096 to just 1,

or 168 iterations on average. Since the overall

execution time of this code is proportional to 𝑁(𝑛 + 𝑝)

where N is the number of reduction elements, n is the

number of innermost loop iterations, and p is the loop

pipeline depth, the case of the highly contracted basis

set, or when 𝑛 > 𝑝, makes a much better use of the

innermost loop pipeline. In other words, pipeline

depth overhead is better amortized for the loops that

have more iterations.

 Model 1 Model 2

of atoms 30 64

Basis set cc-pVDZ STO-6G

of integrals 528,569,315 2,861,464,320

of reduction elements 3,146,010 2,207,920

SRC-6 host (sec) 70.55 518.90

SRC-6 MAP E (sec) 25.42 42.85

Speedup 2.8x 12.1x

Table 1. Performance results for two datasets.

We also observe that in many cases numerical

values of the integrals computed on the MAP Series E

processor differ significantly from the results obtained

while executing code on the CPU. We observe that

values of integrals that fall between 0.0001 and 0.1 are

the same or very close to those computed on the CPU.

However, integral values smaller than 0.0001 (as

computed on the CPU) are almost always ―inverted‖ to

appear as X∙10
+34

 or X∙10
+36

. A plausible explanation

for this may be the use of the smaller area floating-

point arithmetic library, which is less accurate than the

standard floating-point library, but the use of which

was necessary because of the limited FPGA resources.

7. Conclusions

Reconfigurable computing holds the potential for an

order of magnitude speedup for the ab initio electronic

structure codes. However, current systems, such as

SRC-6, are not yet capable of fully supporting such

applications due to the limited size of FPGAs and the

limitations in floating-point libraries. The limited

FPGA size translates into an inability to implement

fully featured codes even for the simplest type of

integrals. The floating-point library limitations do not

allow the implementation of a fully optimized code.

The SRC-7 MAP Series H processor holds promise

to overcome the space limitation as its Altera Stratix II

EP2S180 FPGAs are substantially larger than those

used in MAP Series E processors.

8. Acknowledgement

This work is sponsored by the National Science

Foundation (CHE-06-26354). Special thanks to Trish

Barker from NCSA’s Office of Public Affairs for help

in preparing this publication.

9. References

[1] Ufimtsev, I.S. and Martinez, T.J., Quantum

Chemistry on Graphical Processing Units. 1. Strategies

for Two-Electron Integral Evaluation, J. Chem. Theory

Comput., 4, 2, 222 - 231, 2008

[2] Dupuis, M.; Rys, J.; King, H. F. Evaluation of

molecular integrals over Gaussian basis functions. J.

Chem. Phys. 65, 111, 1976

[3] Boys, S. F. Electronic Wave Functions. I. A

General Method of Calculation for the Stationary

States of Any Molecular System. Proc. R. Soc.

London, Ser. A, 200, 542, 1950

[4] SRC Computers Inc., Colorado Springs, CO, SRC

Systems and Servers Datasheet, 2005.

[5] SRC Computers Inc., Colorado Springs, CO, SRC

C Programming Environment v 1.9 Guide, 2005

[6] Gordon, M. S.; Schmidt, M. W. Advances in

electronic structure theory: GAMESS a decade later. In

Theory and Applications of Computational Chemistry:

the first forty years; Dykstra, C. E., Frenking, G., Kim,

K. S., Scuseria, G. E., Eds.; Elsevier: Amsterdam, p

1167, 2005

