
 1

On Using Simulink to Program SRC-6 Reconfigurable Computer
David Meixner, Volodymyr Kindratenko§, David Pointer

National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign (UIUC)
E-mail addresses: dmeixner@uiuc.edu, kindr@ncsa.uiuc.edu, pointer@ncsa.uiuc.edu

Abstract
By design, the SRC-6 reconfigurable computer is
programmed in the MAP C programming language within
the framework provided by the SRC Carte™ development
environment. The functionality of the original language can
be extended via third party subroutines, called macros.
These macros, typically implemented in Verilog Hardware
Description Language, are brought into the MAP C program
via configuration files that define the interface between the
macros and the MAP C language. In this paper, we describe
a process of using the Verilog source for SRC macros
generated from the MathWorks Simulink® designs built
using Xilinx System Generator™ for DSP and Xilinx
Blockset. We also describe an example application that
takes advantage of this programming model.

Introduction
In this paper we describe a process of programming the
SRC-6 reconfigurable computer [1] using MathWorks
Simulink® [2] with Xilinx System Generator™ for DSP [3]
and Xilinx Blockset [4]. By design, the SRC-6 is
programmed in the SRC MAP C programming language [5].
Code development for the SRC-6 platform closely resembles
code development for a conventional microprocessor-based
system, except for explicit code to support data transfer
between the system memory and FPGA-controlled memory.
The SRC Carte™ development environment [5] allows the
developer to bring in third-party subroutines, called macros,
that can be used to extend the functionality of the original
language. These macros are typically implemented in
Verilog Hardware Description Language (HDL) and are
brought into the MAP C program via configuration files that
define the interface between the macros and MAP C
language. We describe a method of using the Verilog source
for SRC macros generated from the MathWork’s Simulink-
based designs.

The rest of the paper is organized as follows. First, we
provide a brief overview of the SRC-6 reconfigurable
computer and its programming model. Next, we present
steps necessary to integrate a Simulink-based design with
MAP C source code (part of this work also appears in [6]).
We briefly discuss issues related to numerical accuracy of
using fixed-precision arithmetic instead of floating-point
arithmetic. We then present an application example which
shows the benefits of using Simulink instead of the native
MAP C implementation.

SRC-6 reconfigurable computer
The SRC-6 MAPstation used in this work consists of a dual-
CPU Xeon board, one MAP Series C and one MAP Series E
processor, and an 8 GB common memory module, all
interconnected with a 1.4 GB/s low latency Hi-Bar™ switch
(Figure 1). The SNAP™ Series B interface board is used to
connect the CPU board to the Hi-Bar switch.

MemoryMemory

SRC HiSRC Hi--Bar Bar 44--port Switchport Switch

CommonCommon
MemoryMemoryMAPCMAPC®®SNAPSNAP™™

µµPP
PCIPCI--XX
Dual XeonDual Xeon

2.8 GHz, 1 GB memory2.8 GHz, 1 GB memory

MAPEMAPE®®
MemoryMemory

SRC HiSRC Hi--Bar Bar 44--port Switchport Switch

CommonCommon
MemoryMemoryMAPCMAPC®®SNAPSNAP™™

µµPP
PCIPCI--XX
Dual XeonDual Xeon

2.8 GHz, 1 GB memory2.8 GHz, 1 GB memory

MAPEMAPE®®

Figure 1: SRC-6 MAPstation used in the course of this study.

The MAP Series C processor module consists of two user
FPGAs, one control FPGA, and memory (Figure 2). There
are six banks (A-F) of on-board memory (OBM); each bank
is 64 bits wide and 4 MB deep for a total of 24 MB. There is
an additional 4 MB of dual-ported memory dedicated to data
transfer between the two FPGAs. The two user FPGAs in
the MAP Series C are Xilinx Virtex-II XC2V6000 FPGAs.
The FPGA clock rate of 100 MHz is set from within the
SRC programming environment. The MAP Series E
processor module is identical to the Series C module with
the exception of the user FPGAs: The two user FPGAs in the
MAP Series E are Xilinx Virtex-II Pro XC2VP100 chips.

4.8 GB/s4.8 GB/s

2400 MB/s each2400 MB/s each GPIOGPIO

4.8 GB/s4.8 GB/s

1.4 GB/s sustained payload1.4 GB/s sustained payload1.4 GB/s sustained payload1.4 GB/s sustained payload

OBMOBM
AA

OBMOBM
BB

OBMOBM
CC

OBMOBM
DD

OBMOBM
EE

OBMOBM
FF

DualDual--portedported
MemoryMemory
(4 MB)(4 MB) 4.8 GB/s4.8 GB/s

ControlControl
FPGAFPGA

User User
FPGA 1FPGA 1

User User
FPGA 0FPGA 0

On-Board SRAM
28 MB @ 9.6 GB/s

Microprocessor Memory
8 GB @ 1400 MB/s

Distributed SRAM in User Logic
264 KB @ 844 GB/s

Block SRAM in User Logic
648 KB @ 260 GB/s

192

64 6464646464

192

4.8 GB/s4.8 GB/s

108

64 6464646464

4.8 GB/s4.8 GB/s

2400 MB/s each2400 MB/s each GPIOGPIO

4.8 GB/s4.8 GB/s

1.4 GB/s sustained payload1.4 GB/s sustained payload1.4 GB/s sustained payload1.4 GB/s sustained payload

OBMOBM
AA

OBMOBM
BB

OBMOBM
CC

OBMOBM
DD

OBMOBM
EE

OBMOBM
FF

DualDual--portedported
MemoryMemory
(4 MB)(4 MB) 4.8 GB/s4.8 GB/s

ControlControl
FPGAFPGA

User User
FPGA 1FPGA 1

User User
FPGA 0FPGA 0

On-Board SRAM
28 MB @ 9.6 GB/s

Microprocessor Memory
8 GB @ 1400 MB/s

Distributed SRAM in User Logic
264 KB @ 844 GB/s

Block SRAM in User Logic
648 KB @ 260 GB/s

192

64 6464646464

192

4.8 GB/s4.8 GB/s

108

64 6464646464

Figure 2: MAP Series C processor module.

§ Corresponding author

In Proc. 9th Military and Aerospace Programmable Logic Devices (MAPLD) International Conference
September, 2006, Washington, DC.

 2

Software for the SRC MAPstation is developed in the MAP
C programming language using the Carte™ version 2.1
programming environment. The Intel C (icc) version 8.1
compiler is used to generate the CPU side of the combined
CPU/MAP executable. The SRC MAP C compiler produces
the hardware description of the FPGA design for our final,
combined CPU/MAP target executable. This intermediate
hardware description of the FPGA design is passed to Xilinx
ISE place and route tools to produce the FPGA bit file.
Finally, the linker is invoked to combine the CPU code and
the FPGA hardware bit file into a unified executable. Figure
3 provides an overview of the code development process.

SourceSource
(C or Fortran)(C or Fortran)

SourceSource
(MAP C)(MAP C)

C/FortranC/Fortran
compilercompiler

LogicLogic
synthesissynthesis

MAPMAP
compilercompiler

binarybinary
objects objects

LinkerLinker

Macro sourceMacro source
(VHDL/(VHDL/VerilogVerilog))

Place & routePlace & route

binarybinary
objectsobjects netlistnetlist

bitstreambitstream

MAPMAP
librarylibrary

Unified executableUnified executable FPGA codeFPGA codeµµP codeP code µµP codeP code

VerilogVerilog
sourcesource

SourceSource
(C or Fortran)(C or Fortran)

SourceSource
(MAP C)(MAP C)

C/FortranC/Fortran
compilercompiler

LogicLogic
synthesissynthesis

MAPMAP
compilercompiler

binarybinary
objects objects

LinkerLinker

Macro sourceMacro source
(VHDL/(VHDL/VerilogVerilog))

Place & routePlace & route

binarybinary
objectsobjects netlistnetlist

bitstreambitstream

MAPMAP
librarylibrary

Unified executableUnified executable FPGA codeFPGA codeµµP codeP code µµP codeP code

VerilogVerilog
sourcesource

Figure 3: SRC-6 code development process.

Functionality of the MAP C language can be extended via
third-party user macros written in an HDL, such as Verilog,
and integrated with the Carte programming environment via
a black box file that defines the interface information for all
of the user macros and an info file that establishes the
mapping between operators and calls in the source program
and the macros and signal names in the Verilog code
generated by the MAP compiler. We use this feature of the
Carte development environment to bring in Verilog source
generated from Simulink-based designs.

MathWorks Simulink model design
The Simulink model one wishes to incorporate into SRC-6’s
Carte framework should be created using the Xilinx
Blockset for Simulink. Figure 4 shows a simple Simulink
example which takes three inputs: a, b, and c, and outputs
q=(a+b)*c. For this example, all signals have a bit width of
40 and a binary point of 30. The input and output ports are
'gateway in' and 'gateway out' blocks, respectively. They
should be labeled in lowercase letters using the same names
as the variables to be used in the resulting macro. The
'gateway in' blocks also allow one to specify the bit width
and binary point of the inputs; however, they do not perform
the actual data type conversion. The programmer is
responsible for performing the required data type
conversion; more on this follows

Once the Simulink model is created, the next step is to set up

and run the System Generator. Its parameters should be set
up as follows:

• Compilation Type: HDL Netlist
• Part: the FPGA to be used, e.g., Virtex2 xc2v6000-

4ff1517 for MAP Series C processor
• Target Directory: the directory where the Verilog files

will be outputted
• Hardware Description Language: Verilog
• FPGA Clock period (ns): 10

Figure 4: Simple Simulink Example, addmult.mdl.

Once the model generation is complete, several files are
created (here <design> is the name of the model):

• <design>_files.v – contains most of the HDL for the
design.

• <design>_clk_wrapper.v – an HDL wrapper that drives
clocks and clock enables.

• conv_pkg.v – contains constants and functions used by
<design>_fils.v.

• .edn files – implementation of the parts of the design.

In the above example, the following files are produced:
addmult_files.v, addmult_clk_wrapper.v, conv_pkg.v,
adder_subtracter_virtex2_7_0_84f1dba84ee809b9.edn, and
multiplier_virtex2_7_0_b018b3a1b259a550.edn. These files
need to be copied into the macro directory of the target MAP
C implementation.

Integration with Carte framework
First, <design>_clk_wrapper.v file needs to be modified to
include <deisgn>_files.v in addition to conv_pkg.v:

--System Generator code here--

`include "conv_pkg.v"
`include "addmult_files.v" /* line added manually */

module addmult_clk_wrapper (a, b, c, ce, ce_clr, clk, q);

--System Generator code here--

 3

Note that some Xilinx blocks (i.e. FIR filters) cannot be
generated using Verilog, so VHDL has to be used instead.
When using VHDL source instead of Verilog, one needs to
include the <design>_clk_wrapper.prj file in the macros
directory instead of adding the "`include <design>_files.v"
line, and modify the following line:

"set_option -disable_io_insertion false"

so that it is set to "true".

Next, a black box definition for the design is created. It
includes the inputs and outputs defined in the Simulink
model, as well as the signals ce, ce_clr, and clk, created by
the System Generator. If the design does not have any
delays, the signals ce, ce_clr, and clk will not be generated
and should therefore not be included. For this example, the
multiplier has a delay of 5, so the clock signals are
generated. The black box definition appears as follows
(remember that we are using 40-bit fixed-point numbers):

module addmult_clk_wrapper (a, b, c, ce, ce_clr, clk, q);
 input [39:0] a;
 input [39:0] b;
 input [39:0] c;
 input ce;
 input ce_clr;
 input clk;
 output [39:0] q;
endmodule

The next step is to create the info file. This file links the
operators and calls from the source program to macros and
signal names in the HDL code. Note that the inputs and
outputs are 64-bits in the source code, but we only use the
bottom 40-bits in our HDL code. The clk signal should
always be mapped to CLOCK. Lastly, the debug function
can be included as well. The resultant info file is as follows:

BEGIN_DEF "addmult"
 MACRO = "addmult_clk_wrapper";
 STATEFUL = NO;
 EXTERNAL = NO;
 PIPELINED = YES;
 LATENCY = 5;

 INPUTS = 3:
 I0 = INT 64 BITS (a[39:0]) // explicit input
 I1 = INT 64 BITS (b[39:0]) // explicit input
 I2 = INT 64 BITS (c[39:0]) // explicit input
 ;

 OUTPUTS = 1:
 O0 = INT 64 BITS (q[39:0]) // explicit output
 ;

 IN_SIGNAL : 1 BITS "ce" = "1'b1";
 IN_SIGNAL : 1 BITS "ce_clr" = "1'b0";
 IN_SIGNAL : 1 BITS "clk" = "CLOCK";

END_DEF

Next, we add the path for <design>_clk_wrapper.v to the
MACROS line of the Makefile. For this example, the line
would read:

MACROS = macros/addmult_clk_wrapper.v

The last step is to provide a MAP C function prototype:

void addmult(int64_t a, int64_t b, int64_t c, int64_t *q);

Now the macro can be called from MAP C code just as any
other macro:

addmult(a, b, c, &q);

Numerical conversion
Since Simulink performs all calculations with fixed-point
arithmetic, floating-point numbers must be converted to
fixed-point representation in order to take advantage of
variable resolution. This conversion can occur either on the
microprocessor side before the data is transferred from the
main memory to the MAP or on the MAP before the data is
used by the Simulink-based design. We have implemented
subroutines both in C for the execution on the
microprocessor and in MAP C for the inclusion in the
MAP’s algorithm implementation. Appendix A includes C
subroutines that convert between the floating-point and
fixed-point representations.

When converting between floating-point and fixed-point
numerical representations, there can be a loss of numerical
resolution. The size (number of bits) and the binary point of
the fixed-point numbers determine its range and precision,
so a larger range or higher precision requires more bits to be
used. This is a tradeoff that must be taken into consideration
by the programmer. For instance, in the above example the
variables are 40 bits wide with the decimal point placed after
the 30th bit. This allows for an accuracy of
9.31322574615478515625e-10 and a maximum range of just
under ±210, since there are 10 bits for the integer and 30 bits
for the decimal.

Example application
The ability to use fixed-point arithmetic with a user-defined
bit width allows one to save the FPGA resources when
compared to the use of ‘native’ floating-point data types.
This, in turn, allows one to implement additional compute
logic on the chip, thus shortening the overall calculation
time. We demonstrate this in the following application.

In astronomy, the two-point angular correlation function
(TPACF), ω(θ), encodes the frequency distribution of
angular separations, θ, between objects on the celestial
sphere as compared to randomly distributed objects across
the same space [7]. Qualitatively, a positive value of ω(θ)
indicates that objects are found more frequently at angular
separations of θ than expected for randomly distributed

 4

objects, and ω(θ)=0 indicates a random distribution of
objects. Precise computation of the TPACF can involve
calculation of autocorrelation and cross-correlation
components for different angular separations θ for a large
number of celestial objects. As an example, the problem of
computing the autocorrelation function for this particular
application can be expressed as follows:

• Input: Set of points x1, …, xn with Cartesian coordinates
distributed on the surface of the 3-sphere and a small
number b of bins: [θ0, θ1), [θ1, θ2), …, [θb-1, θb].

• Output: For each bin, the number of unique pairs of
points (xi, xj) for which the dot product is in the
respective bin: Bk = |{ij: θk-1 <= xi·xj < θk}|.

This problem can be solved in log(b)(n-1)n/2 steps by
sequentially looping through all unique pairs of points in the
data set, computing their dot product, and applying a binary
search algorithm to identify the bin the dot product belongs
to. The following is the core of the algorithm written in C:

for (int i = 0; i < n-1; i++) {

 for (int j = i+1; j < n; j++) {

 double dot = x[i] * x[j] + y[i] * y[j] + z[i] * z[j];

 int k, min = 0, max = nbins;
 while (max > min+1) {
 k = (min + max) / 2;
 if (dot >= binb[k]) max = k;
 else min = k;
 };

 if (dot >= binb[min]) bin[min] += 1;
 else if (dot < binb[max]) bin[max+1] += 1;
 else bin[max] += 1;

 }

}

The core can be implemented in MAP C as is, however, it
will not constitute an efficient FPGA implementation
because only the most inner loop used for the binary search
algorithm will be pipelined by the MAP C compiler. This
inefficiency can be avoided if the number of bins b is known
ahead of time and thus the binary search loop can be
manually unrolled. As a result, the next most inner loop will
be fully pipelined, and thus the entire problem can be solved
in just (n-1)n/2 steps. For example, assuming that b<32, the
following is an efficient MAP C implementation of the
autocorrelation core:

for (i = 0; i < n-1; i++) {

 pi_x = x[i]; pi_y = y[i]; pi_z = z[i];

 #pragma loop noloop_dep
 for (j = i+1; j < n; j++) {

 cg_count_ceil_32 (1, 0, j == (i+1), 3, &bank);

 dot = pi_x * x[j] + pi_y * y[j] + pi_z * z[j];

 select_pri_8_32val((dot < bv31), 31, (dot < bv30), 30,
 (dot < bv29), 29, (dot < bv28), 28, (dot < bv27), 27,
 (dot < bv26), 26, (dot < bv25), 25, (dot < bv24), 24,
 (dot < bv23), 23, (dot < bv22), 22, (dot < bv21), 21,
 (dot < bv20), 20, (dot < bv19), 19, (dot < bv18), 18,
 (dot < bv17), 17, (dot < bv16), 16, (dot < bv15), 15,
 (dot < bv14), 14, (dot < bv13), 13, (dot < bv12), 12,
 (dot < bv11), 11, (dot < bv10), 10, (dot < bv09), 9,
 (dot < bv08), 8, (dot < bv07), 7, (dot < bv06), 6,
 (dot < bv05), 5,(dot < bv04), 4, (dot < bv03), 3,
 (dot < bv02), 2, (dot < bv01), 1, 0, &indx);

 if (bank == 0) bin1a[indx] += 1;
 else if (bank == 1) bin2a[indx] += 1;
 else if (bank == 2) bin3a[indx] += 1;
 else bin4a[indx] += 1;

 }

}

In this implementation, double-precision floating-point
arithmetic is used in the calculation of the dot product, point
coordinates are stored in the OBM banks, care is taken to
avoid read-after-write data dependency, and
select_pri_8_32val macro is used to implement a sequence
of if/if else statements.

The dataset and random samples used to calculate TPACF in
this study are the sample of photometrically classified
quasars, and the random catalogs, first analyzed in this
context by [7]. The dataset and each of the random
realizations contains 97178 points (n=97178). We use five
bins per decade of scale with θmin=0.01 arcminutes and
θmax=10000 arcminutes. Thus, angular separations are
spread across 6 decades of scale and require 30 bins (b=30).
Covering this range of scales requires the use of double-
precision floating-point arithmetic as single-precision
floating-point numbers are not sufficient to accurately
compute θ values smaller than 1 arcminute. However, a
closer look at the numerical range of the bin boundaries
shows that just 41 bits of the mantissa are sufficient to cover
the required range of scales. Thus, instead of using double-
precision floating-point arithmetic, we can use fixed-point
arithmetic via macros implemented in Simulink. These
macros will replace the dot product calculation and
select_pri_8_32val macro as follows:

dot_product(pi_x, pi_y, pi_z, x[j], y[j], z[j], &dot);

bin_mapper(dot, bv01, bv02, bv03, bv04, bv05, bv06,
 bv07, bv08, bv09, bv10, bv11, bv12, bv13,
 bv14, bv15, bv16, bv17, bv18, bv19, bv20,
 bv21, bv22, bv23, bv24, bv25, bv26, bv27,
 bv28, bv29, bv30, bv31, bv32, &indx);

In this implementation, point coordinates are stored in the
OBM banks as before. However, instead of the double-
precision floating-point representation we use 48 bits fixed-
point representation with 42 bits allocated for the fractional
part and 6 bits allocated for the integer part and the sign.
The few extra bits in excess of the 41 bits previously

 5

mentioned as sufficient to represent the bin boundaries are
used to eliminate effects associated with rounding and
overflow. The conversion between the point coordinates
stored in the double-precision floating-point format and the
fixed-point format takes place on the CPU before the data is
translated to the OBM banks. The overhead associated with
the data type conversion is negligible compared to the
overall computational time.

The Simulink-based dot product macro implementation is
shown in Figure 5 and the bin mapping macro design is
shown in Figure 6 and Figure 7. Table 1 shows reports for
loop pipelining, FPGA resource utilization, and place and
route time for the complete design. Thus, SLICE utilization
is reduced by 22% as compared to the original design. This
was expected because 31 double-precision floating-point
comparison operators are now replaced with much smaller
48-bits-wide fixed-point comparison operators and a cascade
of 1-bit adders.

Figure 5: Dot product macro implemented in Simulink.

Figure 6: Bin mapping macro implemented in Simulink.

 Original Modified

pipeline depth (clocks) 49 29

MULT18X18s 12% 18%

RAMB16s 5% 5%

SLICEs 63% 41%

PAR time (minutes) 76 25

Table 1. Comparison of two implementations.

Figure 7: One of four sub-components from the bin mapping

macro.

Note that MULT18X18s utilization has increased from 12%
to 18%. This was not expected; it can be explained,
however, by a less efficient implementation of the
multipliers in Xilinx Blockset. In addition, the time needed
to place and route the entire design on the chip is reduced by
a factor of 3. This is mainly due to the smaller overall size
of the design.

So, what did we gain by implementing parts of this
application in Simulink rather than in native MAP C? It
turns out that when using the native MAP C implementation,
we are able to place only two such compute kernels on the
FPGA before we run out of available SLICEs. However,
when using the Simulink-based kernel implementation,
because of the reduced usage of the SLICEs, we are able to
place 4 compute kernels per chip, thus achieving twice the
performance of the native MAP C implementation.

Conclusions
We have demonstrated how a Simulink-based design created
with Xilinx System Generator and Xilinx Blockset can be
integrated with the native SRC MAP C code. The ability to
introduce Simulink-based designs into the Carte framework
opens up new possibilities in programming the SRC-6
system. The main advantage of using Simulink-based
designs is the ability to use the fixed-point numeric type,
which is not directly available in MAP C. This leads to
reduced FPGA resource utilization as one can avoid the need
to use larger numerical types for problems that require a
reduced numerical range. Other benefits, although not
explored in this paper, include the ability to use low-level
FPGA resources (e.g., BRAM) directly and access to Xilinx
IP cores, such as FFT and CORDIC algorithms, etc.

We should point out that instead of using Simulink, one can
implement the same functionality using an HDL directly.
However, using HDL is a more involved process as it
requires a set of skills typically possessed by those involved

 6

with hardware design, whereas the Simulink environment
provides a higher level of abstraction and is more familiar to
software developers.

Acknowledgements
This work was funded by the National Science Foundation
grant SCI 05-25308. We would like to thank Jon
Huppenthal, David Caliga, Dan Poznanovic, and Dr. Jeff
Hammes, all from SRC Computers Inc., for their help and
support with the SRC-6 system. The TPACF work was
performed in collaboration with Dr. Adam Myers and Dr.
Robert Brunner from the Department of Astronomy at the
University of Illinois at Urbana-Champaign and funded by
NASA grants NAG5-12578, NAG5-12580, and
NNG06GH15G. Special thanks to Trish Barker from
NCSA’s Office of Public Affairs for help in preparing this
publication.

References
[1] SRC Computers Inc., Colorado Springs, CO, SRC Systems

and Servers Datasheet, 2005.
[2] http://www.mathworks.com/products/simulink/
[3] http://www.xilinx.com/ise/optional_prod/system_generator.htm
[4] http://www.xilinx.com/products/software/sysgen/blockset.htm
[5] SRC Computers Inc., Colorado Springs, CO, SRC C

Programming Environment v 2.1 Guide, 2005.
[6] D. Meixner, V. Kindratenko, D. Pointer, Running Simulink-

based Designs on SRC-6, The High Performance Embedded
Computing (HPEC’06).

[7] A. Myers, R. Brunner, G. Richards, R. Nichol, D. Schneider,
D. Vanden Berk, R. Scranton, A. Gray, and J. Brinkmann,
First Measurement of the Clustering Evolution of
Photometrically Classified Quasars, The Astrophysical
Journal, 2006, 638, 622.

Appendix A
/* double2fix
 input: flp - a 64-bit floating-point number
 binpt - the placement of the decimal point
 output: a 64-bit integer holding the fixed-point representation
*/

long long double2fix (double flp, int binpt) {

 if (binpt == 63 && flp == -1)
 return ((long long)1 << 63);

 union {double d; long long l;} temp;
 long long sign, exp, man, fixed;

 temp.d = flp;
 if (temp.d == 0) return 0;

 sign = temp.l >> 63;
 exp = ((temp.l >> 52) & 0x7FF) - 1023;
 man = temp.l & 0xFFFFFFFFFFFFF;

 if (binpt-(52-exp) > 0)

 fixed = (man | 0x10000000000000) << (binpt-(52-exp))
& 0x7FFFFFFFFFFFFFFF;
 else
 fixed = (man | 0x10000000000000) >> ((52-exp)-binpt);

 if (sign < 0) fixed = ~fixed+1;

 return fixed;

}

/* fix2double
 input: fixed - a 64-bit integer holding a fixed-point number
 binpt - the placement of the decimal point
 width - the bit width of the fixed-point number
 output: a double holding the floating-point representation
*/

double fix2double (long long fixed, int binpt, int width) {

 union {double d; long long l;} flp;
 long long sign = 0;
 long long exp = 1023;
 long long man;

 if ((binpt == 63) && (fixed == (long long)1<<63))
 return -1;
 else if ((fixed >> (width-1)) & 1) {
 if (width != 64)
 fixed = fixed | ((long long)-1 << width);
 fixed = ~fixed+1;
 sign = 1;
 }

 man = fixed;
 if (binpt == 63) {
 binpt--;
 exp--;
 }

 if (fixed == 0) exp = 0;
 else if ((fixed >> binpt) > 1) {
 while ((fixed >> binpt) > 1) {
 fixed = fixed >> 1;
 exp++;
 }
 }
 else {
 while ((fixed >> binpt) < 1) {
 fixed = fixed << 1;
 exp--;
 }
 }

 if ((man >> 52) < 1 && man != 0) {
 while (man >> 52 < 1)
 man = man << 1;
 }
 else {
 while ((man >> 52) > 1)
 man = man >> 1;
 }

 man = man & 0xFFFFFFFFFFFFF;
 flp.l = (sign << 63) | (exp << 52) | man;

 return flp.d;

}

