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Abstract. In this paper, a systematic review of various contour functions and methods of their analysis, as applied
in the field of shape description and characterization, is presented. Contour functions are derived from planar object
outlines and are used as an intermediate representation from which various shape properties can be obtained. All
the functions are introduced and analyzed following the same scheme, thus making it possible to compare various
representations. Although only a small subset of contour functions is included in the survey (cross-section, radius-
vector, support, width, parametric, complex, tangent-angle, curvature, polynomial, and parametric cubic), the paper
demonstrates a multitude of techniques for shape description that are based on this approach. Several analysis tools,
such as statistics, line moments and invariants, Fourier and other series expansions, curvature scale space image,
wavelet, and Radon transform are described.
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1. Introduction

The problem of shape analysis has been given constant
attention in pattern recognition and computer vision lit-
erature. The field has been intensively developed over
past decades both in theoretical and applied domains
[31]. Three major directions in shape analysis can be
identified based on how the object, the shape of which
is analyzed, is treated in mathematical terms [46]. In
the set theory approach, elements of set theory are used
to describe the objects. Shape analysis methods based
on mathematical morphology and fractal geometry are
examples of this approach. In the functional approach,
functions are used to represent the shape. Such rep-
resentation is possible in many ways and it results in
a function that embeds desirable characteristics and
properties of the shape. Theory of functions and differ-
ential geometry can be directly applied to study such
shape functions. In the statistical shape analysis ap-
proach, the concept of replacing an object by a group of
points that are constrained by some geometrical prop-
erties or have a certain physical meaning is exploited.
Such “point fields” are analyzed by various statistical
methods.

In this review, shape description methods based on
functions are considered. Contour functions are appro-
priate for many applications because of their advan-
tages over other methods [46]: (i) an effective data
reduction—frequently only a few coefficients of the
approximation function are needed for a rather pre-
cise form description, (ii) a convenient description of
complex forms, and (iii) an intuitive characterization of
many form properties that can be derived analytically
and therefore are very accurate. The necessary choice
of a reference point to be the origin that often appears
to be arbitrary, and complicated analytical formulae for
functions and characteristics even for simple shapes are
among the disadvantages of this approach.

The shape of an object is a difficult concept. An
ideal shape parameter is a set function value that does
not depend on geometrical transformations such as
translation, rotation, size changes and reflection. Here
only two-dimensional objects or two-dimensional im-
ages of three-dimensional objects, which can be their
projections or sections, are considered. It is assumed
that the two-dimensional information is sufficient for a
reasonable characterization. It is always assumed that
the objects are sets in the sense of mathematical set
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theory. It is assumed that the sets are compact and
closed in the topological sense. Following the defini-
tion proposed in [46], such sets will be referred to as
figures. The closure of the figure is called the boundary.
The contour of a figure is a closed planar curve that con-
sists of the elements of the figure boundary. When all
the information in the figure about its location, scale,
and orientation, is removed, the information that re-
minds is called the shape of the figure. In this review,
only the continuous case is considered as it provides
the basis for analyzing discretized contours. More on
the specifics associated with the discretized curves can
be found elsewhere [19, 25, 44, 52].

2. Contour Functions

There are two basic principles that can be exploited to
derive a contour function: symmetry and periodicity. If
the contour of a figure is symmetric with respect to a
line, the orthogonal distance of the contour point from
the symmetry line as a function of position on the sym-
metry line can be considered as a contour function.
Contour function may be periodic, the contour itself
can be considered as a periodic function. Assuming
that the contour has some desirable properties, such as
convexity, relatively simple contour functions can be
introduced. In a more general sense, the contour itself
can be parameterized and treated as a function. Also,
one contour function may be derived from another con-
tour function.

2.1. Cross-Section Function for Symmetric Figures

It is natural to describe the form of a symmetric figure
by the cross-section function, the half-breadth at x [46].
Consider a symmetric figure that is oriented in such
a way that its symmetry axis coincides with the x-
axis of the coordinate system. Only one-half of the
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Figure 1. (a) definition of the cross-section function for symmetric figures; (b) problems with the cross-section functions occur if there is more
than one contour point on the line through x orthogonal to the symmetry axis.

figure is used and for each of its point the coordinates
(x, qX (x)) are obtained where qX (x) is the half-breadth
at x (Fig. 1(a)). Problems occur if there is more than
one contour point on the line through x orthogonal to
the symmetry axis (Fig. 1(b)). This ambiguity can be
removed by choosing the mean distance as the function
value, or the outer contour point, or by smoothing the
contour. These simplifications however may destroy es-
sential features of the contour. Another problem occurs
when a figure has more than one symmetry line. In this
case, more than one cross-section function can exist.
Examples of a symmetric figure and its cross-section
function are given in Fig. 2.

The cross-section function qX (x) of figure X

1. is invariant under translation: qX+v(x) = qX (x)
where X + v is X translated by a vector v;

2. depends on changes of the size of the figure:
qλX (x) = λqX (x) where λX is figure X zoomed
by a factor λ;

3. does not depend on the orientation of the figure;
4. is, in general, not invariant under reflection;
5. is not periodic, in fact, it is defined only for a certain

interval on x ;
6. if figure X is a subset of figure Y (X ⊂ Y ), then

qX (x) ≤ qY (x).

Figure perimeter P(X ) and area A(X ) can be obtained
by integrating its cross-section function qX (x):

P(X ) = 2
∫ x1

x0

√
1 + q ′2

X (x) dx and

A(X ) = 2
∫ x1

x0

qX (x) dx .

2.2. Radius-Vector Function

Frequently the contour of a figure is described by the
radius-vector function defined in the following way
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Figure 2. (a) symmetric figure X ; (b) cross-section function qX (x) of figure X .
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Figure 3. (a) definition of the radius-vector function; (b) problems
with the radius-vector function occur if the figure is not star-shaped.

[10, 31, 32, 42, 46]. A reference point O in the interior
of figure X is selected which is usually the center of
gravity, or the center of the smallest disc which com-
pletely contains the figure, or a physically important
point. Next, an appropriate reference line l crossing
the reference point O is chosen which is usually paral-
lel to the x- or y-axis. Then the radius-vector function
rX (ϕ) is the distance from the reference point O to the
contour in the direction of the ϕ-ray where 0 ≤ ϕ ≤ 2π

(Fig. 3(a)).

Figure 4. (a) start-shaped figure X ; (b) radius-vector function rX (ϕ) of figure X . The center of gravity of the figure was used as the origin to
generate the radius-vector function.

It is necessary, however, that the figure is star-shaped
with respect to O . That is, for any contour point p the
whole line segment from O to p should lie within the
figure. In this case, the radius-vector function com-
pletely characterizes the figure: if rX (ϕ) is given, then
the figure can be uniquely reconstructed.

The figure can be star-shaped with respect to one
reference point, even if it is not with respect to an-
other. If the star-shapedness is violated by only small
irregularities in the contour, it is possible to recover
it by smoothing or by moving the reference point. In
the general case however, description by the radius-
vector function is not suitable for non-star-shaped fig-
ures. Examples of a star-shaped figure and its radius-
vector function are given in Fig. 4.

The radius-vector function rX (ϕ) of a star-shaped
figure X

1. is invariant under translation: rX+v(ϕ) = rX (ϕ)
where X + v is X translated by a vector v;
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2. depends on the changes of the size of the figure:
rλX (ϕ) = λrX (ϕ) where λX is figure X zoomed by
a factor λ;

3. depends on the orientation of the figure: rX (ϕ) =
rY (ϕ − α) where Y is figure X rotated by an angle
α;

4. is not invariant under reflection;
5. is periodic with the period 2π : rX (ϕ + 2π ) =

rX (ϕ);
6. if a start-shaped figure X is a subset of a star-shaped

figure Y (X ⊂ Y ), then rX (ϕ) ≤ rY (ϕ).

The map X → rX transforms star-shaped figures into
elements of a function space. Radius-vector functions
of star-shaped figures are continuous inϕ, consequently
they can be embedded in the Banach space C[0, 2π ] of
all continuous functions on [0, 2π ].

When the radius-vector function rX (ϕ) of a star-
shaped figure X is known, some geometrical figure
parameters can be obtained. Integrating rX (ϕ) yields
perimeter P(X ), area A(X ), and mean radius-vector
length r̄X :

P(X ) =
∫ 2π

0

√
r2

X (ϕ) + r ′2
X (ϕ) dϕ,

A(X ) = 1

2

∫ 2π

0
r2

X (ϕ) dϕ, and r̄X = 1

2π

∫ 2π

0
rX (ϕ) dϕ.

A quantitative index of the differences between radius-
vector functions of different figures may be obtained
using the average squared deviation of the radius-vector
function from a circle of equal area. This “roughness
coefficient” is defined as:

R′
X = 1

2π

∫ 2π

0
r2

X (ϕ) dϕ −
(

1

2π

∫ 2π

0
rX (ϕ) dϕ

)2

.
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Figure 5. (a) definition of the support function sX (ϕ) and the width function wX (ϕ) of figure X ; (b) both figures have the same support function.

2.3. Support Function

Support functions are frequently used to describe con-
vex figures [41, 46]. For figure X the support function
is defined as follows. Let gϕ be an oriented line passing
through the origin O with the direction ϕ (0 ≤ ϕ ≤ 2π )
and let g⊥

ϕ be the line orthogonal to gϕ with the property
that figure X lies completely in that half-plane deter-
mined by g⊥

ϕ with g⊥
ϕ ∩ X �= ∅, which is opposite to

the direction of gϕ (Fig. 5(a)). The absolute value of
the support function equals to the distance from O to
g⊥

ϕ and the support function sX (ϕ) is negative if the
figure lies behind g⊥

ϕ as seen from the origin. If O is
an element of the figure, then sX (ϕ) ≥ 0 for all ϕ.

An equation to calculate the support function sX (ϕ)
can be written using the normal equation of the line.
Consider the closed contour of figure X in Euclidean
space. Let the perimeter of the figure be L . Every point
(xX (l), yX (l)) of the contour of X can thus be identi-
fied with a number l, 0 ≤ l ≤ L , that runs through
anti-clockwise. Then the support function sX (ϕ) can
be calculated as

sX (ϕ) = max
0≤l≤L

{xX (l) cos ϕ + yX (l) sin ϕ}.

It is obvious that there exist different non-convex
figures with the same support function (Fig. 5(b)). In
contrast, convex figures are uniquely determined by
their support functions. If sX (ϕ) is twice differentiable
then figure X itself must be convex. An example of
a convex figure and its support function is given in
Fig. 6.

The support function sX (ϕ) of a convex figure X

1. in general, is not invariant under translation except
for the case when O is an element of figure X ;
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Figure 6. (a) convex figure X ; (b) support function sX (ϕ) of figure X . The center of gravity of the figure was used as the origin to generate the
support function.

2. depends on the changes of the size of the figure:
sλX (ϕ) = λsX (ϕ) where λX is figure X zoomed by
a factor λ;

3. depends on the orientation of the figure: sX (ϕ) =
sY (ϕ − α) where Y is figure X rotated by an angle
α;

4. is not invariant under reflection;
5. is periodic with the period 2π : sX (ϕ + 2π ) =

sX (ϕ);
6. if a convex figure X is a subset of a convex figure Y

(X ⊂ Y ), then sX (ϕ) ≤ sY (ϕ);
7. if a convex figure X is symmetric, then sX (ϕ) =

sX (ϕ + π ).

The map X → sX transforms convex figures into ele-
ments of a function space. Consequently, support func-
tions of convex figures can be embedded in the Banach
space C[0, 2π ] of all continuous functions on [0, 2π ].

If a convex figure X has a smooth boundary, then its
support function sX (ϕ) determines the curvature. The
curvature radius ρX (ϕ) of the figure corresponding to
ϕ is related to the support function sX (ϕ) as ρX (ϕ) =
sX (ϕ) + s ′′

X (ϕ) where 0 ≤ ϕ ≤ 2π . Having support

Figure 7. (a) figure X ; (b) width function wX (ϕ) of figure X .

function sX (ϕ) of a convex figure X , its perimeter P(X )
and area A(X ) satisfy

P(X ) =
∫ 2π

0
sX (ϕ) dϕ and

A(X ) = 1

2

∫ 2π

0
sX (ϕ)(sX (ϕ) + s ′′

X (ϕ)) dϕ.

2.4. Width Function

The so-called width function wX (ϕ) (Fig. 5(a)) is
closely connected with the support function: wX (ϕ) =
sX (ϕ) + sX (ϕ + π ) where 0 ≤ ϕ ≤ π [46]. Physi-
cally wX (ϕ) is the breadth of the figure in the direc-
tion ϕ. For shape analysis the width function has the
advantage that it is invariant with respect to transla-
tion: wX+x (ϕ) = wX (ϕ). But rotation changes the width
function. In general, the width function does not de-
scribe the form of a figure uniquely even if the figure is
convex. An example of a figure and its width function
is given in Fig. 7.

Having the width function wX (ϕ) of figure X , some
contour parameters can be obtained. Thus, perimeter
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P(X ) of the figure can be yielded as

P(X ) = 1

2

∫ 2π

0
wX (ϕ) dϕ,

however, the area is not uniquely determined by the
width function.

2.5. Contour Parametric and Contour
Complex Functions

Consider the closed contour of figure X in Euclidean
space and let the perimeter of figure X be L . Every
point pl(xX (l), yX (l)) of the contour of X can thus
be identified with a number l, with 0 ≤ l ≤ L , run-
ning through anti-clockwise. A point moving along
the contour in the anti-clock-wise direction generates a
function which can be represented parametrically as
cX (l) = (xX (l), yX (l)). Contour parameterization in
which the contour is parameterized by its arc length
is called natural parameterization.

Consider the closed contour of figure X in polar co-
ordinates. Every point pl of the contour of X has po-
lar coordinates (dX (l), θX (l)). A point moving along
the contour in the anti-clockwise direction generates
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Figure 8. (a) complex function zX (l) of figure X ; (b) parametric function cX (l) = (xX (l), yX (l)) of figure X ; (c, d) parametric function
τX (l) = (dX (l), θX (l)) of figure X .

a function which can be represented parametrically as
τX (l) = (dX (l), θX (l)).

Finally, consider the closed contour of figure X in
the complex plane. Every point pl of the contour of X
has its complex coordinates zX (l) = xX (l) + iyX (l). A
point moving along the contour in the anti-clockwise
direction generates a complex function zX (l).

It is important to note that all three contour func-
tions are identical. That is, when one contour function
representation is known, the other two can be easily
obtained:

zX (l) = xX (l) + iyX (l), cX (l) = (Re zX (l), Im zX (l)),

τX (l) = (|zX (l)|, arg zX (l)), cX (l)

= (|dX (l)| cos θX (l), |dX (l)| sin θX (l)).

Examples of contour parametric functions are given in
Fig. 8. The functions are not invariant under translation
of the figure, are not invariant under changes of the size
of the figure, depend on the orientation of X , are not
invariant under reflection of the figure, and are periodic
with the period L .

For shape analysis it is sometimes helpful to nor-
malize these functions in such a way that the perimeter
length is eliminated and the functions are defined on
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[0, 2π ]. This can be done in the following way [40]. The
perimeter is normalized by defining t = 2πl L−1 and
the functions are normalized as c∗

X (t) = cX (t L(2π )−1),
τ ∗

X (t) = τX (t L(2π )−1) and z∗
X (t) = zX (t L(2π )−1).

When one of these functions is known for figure X ,
some geometrical figure parameters can be calculated.
Perimeter P(X ) of the contour is

P(X ) =
∫ L

0

√
x ′2

X (l) + y′2
X (l) dl.

Oriented figure area A(X ) is given by the well-known
differential geometry formula

A(X ) = 1

2

∮
(C)

(
xX (l)

dyX (l)

dl
− yX (l)

dxX (l)

dl

)
dl

where A(X ) is positive or negative depending on where
the figure is located when it is traced on the contour C-
from the left or right side, respectively. Equations of the
tangent and normal at a point (xX (l), yX (l)) of figure
X are:

y − yX (l)

y′
X (l)

= x − xX (l)

x ′
X (l)

and

x ′
X (l)(x − xX (l)) + y′

X (l)(y − yX (l)) = 0.

The curvature κX (l) and curvature radius ρX (l) at
the point (xX (l), yX (l)) of the contour of X can be
calculated as

κX (l) = x ′
X (l)y′′

X (l) − x ′′
X (l)y′

X (l)(
x ′2

X (l) + y′2
X (l)

)3/2 and

ρX (l) = 1

|κX (l)| .

Coordinates (xk, yk) of the center of curvature at the
point (xX (l), yX (l)) of the contour of figure X are
defined as

xk = xX (l) − y′
X (l)

(
x ′2

X (l) + y′2
X (l)

)
x ′

X (l)y′′
X (l) − y′

X (l)x ′′
X (l)

and

yk = yX (l) + x ′
X (l)

(
x ′2

X (l) + y′2
X (l)

)
x ′

X (l)y′′
X (l) − y′

X (l)x ′′
X (l)

Contour parametric function cX (l) can be presented in
a scaling function basis as [21]

cX (l) =
∞∑

k=−∞
bkϕ(l − k) where

ϕ(t) =
∑

k

h(k)ϕ(2t − k)

In this representation, ϕ is called the scaling function
and it satisfies the two-scale difference equation where
h(k) is the mask of the corresponding refinement filter;
bk denotes the sequence of vector coefficients. This de-
scription of cX (l) is equivalent to a periodized wavelet
representation [8]. Also, a case of special interest is
ϕ = βn where βn is the casual B-spline of degree n.

2.6. Tangent-Angle Function

Often the tangent angle at different points of the con-
tour is used for the description of a figure [16, 46]. It
is assumed that the contour of figure X is piecewise-
smooth so that a tangent may not exist at only a finite
number of points.

Let the perimeter of figure X be L . Every point pl of
the contour of X can thus be identified with a number
l, with 0 ≤ l ≤ L , running through anti-clockwise. A
pointer is placed at p0 so that its zero position coincides
with the tangent direction at p0. If the pointer moves
on the contour, then it changes its direction in such a
way that it is always in the direction of the tangent,
where its orientation is given by the direction of the
movement. The angle given by the pointer direction at
pl is denoted φX (l) where φX (0) = 0 and φX (L) = 2π

(Fig. 9). The function φX (l) is called the tangent-angle
function.

Sometimes it is helpful to normalize function φX (l)
in such a way that the perimeter length is eliminated
and the function is defined on [0, 2π ], like the radius-
vector and support functions. In practice it can be
done in the following way. The perimeter is normal-
ized by defining t = 2πl L−1 and φX (l) is normalized
as φ∗

X (t) = φ(Lt(2π )−1) + t where 0 ≤ t ≤ 2π and
φ∗

X (0) = φ∗
X (2π ) = 0. Examples of a figure and its nor-

malized tangent angle function are given in Fig. 10. The
normalized tangent-angle function φ∗

X (t) of figure X

1. is invariant under translation: φ∗
X+v(t) = φ∗

X (t)
where X + v is X translated by a vector v;

2. is invariant under changes of the size of the figure:
φ∗

λX (t) = φ∗
X (t) where λX is figure X zoomed by a

factor λ;
3. does not depend on the orientation of the figure;
4. is not invariant under reflection;
5. is periodic with the period 2π : φ∗

X (t + 2π ) = φ∗
X (t).

The map X → φ∗
X transforms figures into elements of

a function space, but the normalized tangent-direction
functions of figures in general are not continuos.
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Figure 9. (a, b) definition of the tangent-angle function φX (l) of figure X .

Figure 10. (a) figure X ; (b) the normalized tangent-angle function φ∗
X (t) of figure X .

Chain code [22] is an important discrete version of
the tangent-angle function for the case of digital con-
tours. The result of chain encoding is a direction from a
point of the contour to its nearest neighbor point along
the contour in the anti-clockwise direction as the func-
tion of the index of the contour point. Such function is
a sequence of numbers 0, 1, . . . , 7 that correspond to
0◦, 45◦, 90◦, . . . , 315◦ angles.

2.7. The Intrinsic Equation of the Contour

The intrinsic equation of the contour is defined to be the
curvature as a function of the contour arc length [5, 6,
9, 14, 18, 20, 30, 43, 45, 51]. Such representation of the
contour plays a key role in differential geometry. The
importance of this function is immediately clear when
looking at the fundamental theorem in the analysis of
curves: if two single-valued continuous functions are
given, then there exists one and only one planar curve,
determined but for its position on the plane, for which

one of the given functions is the arc length (measured
from an appropriate point on the curve) and other is
the curvature.

Three different definitions of the curvature can be
given:

(i) orientation based continuous curvature:

κX (l) = φ′
X (l);

(ii) path based continuous curvature:

κX (l) = x ′
X (l)y′′

X (l) − x ′′
X (l)y′

X (l)(
x ′2

X (l) + y′2
X (l)

)3/2 ;

(iii) osculating circle based continuous curvature:

κX (l) =




+ 1

ρX (l)
if contour is locally convex

− 1

ρX (l)
if contour is locally concave



On Using Functions to Describe the Shape 233

Figure 11. Curvature function κX (l) of figure X shown in Fig. 10(a).

The definitions are equivalent in the continuous case but
not so in the discrete case. Different numerical methods
of curvature estimation are based on either one of these
definitions. An example of a curvature function is given
in Fig. 11.

The curvature function has the same properties as
those mentioned for the tangent-angle function. Some
geometrical contour features are related to the contour
curvature function κX (l). Thus, the corners are loca-
tions on the contour where the curvature κX (l) becomes
unbounded. In practice, a corner is declared whenever
|κX (l)| assumes a large value.

Another attribute associated with the curvature is the
bending energy:

EX = 1

L

∫ L

0
|κX (l)|2 dl.

Also the definition of the detrended function θ̂X (l) of
the contour is closely related to its curvature:

θ̂X (l) =
∫ l

o
κ(p) dp − 2πl

L
.

2.8. Algebraic Curve Model

An algebraic curve of the order n is defined as the zero
set of polynomial pn in two variables [47]:

pn(x, y) =
∑

0≤k, j,k+ j≤n

ak j x
k y j = YTA = 0

The polynomial coefficients vector A consists of
1
2 (n + 1)(n + 2) coefficients akj with 0 ≤ k, j, k + j ≤
n and vector Y = [1, x, y, x2, xy, y2, . . . , yn]T. An

algebraic curve of degree 2 is a conic, degree 3 is a
cubic, and so on.

A complex representation of an algebraic curve is
also possible and it provides a simplified framework
for analyzing rotation and translation. Using complex
variables z = x + iy and z̄ = x − iy and binomial
expansions for (z + z̄)k and (z − z̄) j , pn(x, y) can be
written as

pn(z) =
∑

0≤k, j,k+ j≤n

ck j z̄
k z j = Z̄TC = 0

where C = (ck j ) are complex linear combination of akj

and Z is the vector of complex monomials.
The algebraic curve pn(x, y) of figure X is not in-

variant under translation, change of size, rotation, and
reflection. However, translational dependence can be
canceled by centering the polynomial at the origin
of the coordinate system; rotational invariants can be
obtained too.

2.9. Parametric Cubic Curves

The contour parametric function cX (l) can be cut in
finite segments. Each such curve segment s can be ap-
proximated by high-degree polynomial [15]

Qs(l) = [xs(l) ys(l)] =
[

n∑
k=0

bxklk
n∑

k=0

byklk

]

where bxk and byk are polynomial coefficients and
xs(l) and ys(l) refer to the contour parametric func-
tion cs(l) defined on segment s. Cubic polynomials
f (l) = b f 0 + b f 1l + b f 2l2 + b f 3l3 are most often used
because of their properties, although higher-degree



234 Kindratenko

polynomials can be used too. Each curve segment Qs(l)
is defined by constraints on end points, tangent vectors,
and continuity between curve segments. Depending
on what constraints are used to define Qs(l), different
types of curves can be obtained.

Cubic Hermite curves are defined by two end points,
p1, p4, and two end point tangent vectors, r1, r4:

Q(l) = (2l3 − 3l2 + 1)p1 + (−2l3 + 3l2)p4

+ (l3 − 2l2 + l)r1 + (l3 − l2)r4

Consecutive Hermite cubics must share end points and
tangent vectors with at least equal directions in order
to continuously approximate a closed shape defined by
its parametric function cX (l). Cubic Bézier curves are
defined by two end points and two other points, p2, p3,
that control the endpoint tangent vector:

Q(l) = (1 − l)3 p1 +3l(1 − l)2 p2 + 3l2(1 − l)p3 + l3 p4

Two consecutive Bézier curve segments with a com-
mon end point continuously approximate the shape
when the common end point and its immediate 2 neigh-
bor points are distinct and collinear. Uniform cubic B-
splines approximate a series of m + 1 control points
p0, . . . , pm, m ≥ 3, with a curve consisting of m − 2
cubic polynomial curve segments Q3, . . . , Qm . Thus,
for m = 3, Q3 is defined by p0, . . . , p3, Q4 is defined
by p1, . . . , p4, and so on:

Qi (l − li ) = (1 − l)3

6
pi−3 + 3l3 − 6l2 + 4

6
pi−2

+ −3l3 + 3l2 + 3l + 1

6
pi−1 + l3

6
pi

Joint points li between Qi and Qi+1 are called knots
and Qi and Qi+1 are continuous at li . In the case of
uniform B-splines, knots are equally spaced on l.

Uniformly shaped β-splines differ from B-splines
by requiring 2 additional parameters, β1 and β2, to
provide further control over shape. The first parame-
ter is called the bias parameter and it influences how
the tangent vector affects the spline, the second pa-
rameter is called tension parameter and as it increases
the spline is pulled closer to the lines connecting the
control points. Non-uniform B-splines, rational cubic
polynomials, and Overhauser splines [15] are just a
few examples of other parametric cubic curves used to
approximate the shape.

3. Analysis of Contour Functions

Although some shape properties can be computed di-
rectly from the shape functions, it is more advanta-
geous to further analyze these functions so that a more
meaningful and compact shape description is obtained.
Several practical contour function analysis techniques
are described below. Again, as with the shape func-
tions, not all such techniques are included and some
techniques are covered only briefly.

3.1. Invariant Contour Function Parameters

Some simple quantities of contour functions can be
determined [46]. Thus, the mean value of a contour
function f (x) is given by

f̄ = 1

2π

∫ 2π

0
f (x) dx ≈ 1

N

N∑
i=1

f (xi ).

The mean value f̄ of a contour function f (x) is a size
parameter except in the case of the tangent-vector, con-
tour curvature and contour parametric functions. In
the latter case, it reveals the center of gravity of the
contour.

Variance of a contour function f (x) is given by

σ 2( f ) = 1

2π

∫ 2π

0
[ f (x) − f̄ ]2 dx

≈ 1

N

N∑
i=1

( f (xi ) − f̄ )2.

The variance σ 2( f ) of a contour function f (x) is a size,
shape and roundness characteristic.

Variance of the derivative of a contour function f (x)
is given by

σ 2( f ′) = 1

2π

∫ 2π

0
f ′2(x) dx

≈ 1

N

N∑
i=1

(
f (xi−2) − 8 f (xi−1) + 8 f (xi+1) − f (xi+2)

12�

)2

where � = 2π N−1, x−1 = xN−1, x0 = xN , xN+1 =
x1, xN+2 = x2. The variance σ 2( f ′) of the derivative
describes local properties such as roundness and texture
variations.
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The covariance function of a contour function f (x)
is given by

χ f (ϕ) = 1

2π

∫ 2π

0
[ f (x) − f̄ ][ f (x + ϕ) − f̄ ] dx,

χ f (k�) = 1

N

N∑
i=1

[ f (xi ) − f̄ ][ f (xi+k) − f̄ ]

where 0 ≤ ϕ ≤ 2π, f (2π + x) = f (x), xN+k = xk .
Covariance χ f (ϕ) describes some aspects of local
and global form fluctuations. The normalized function
χ f (ϕ)χ−1

f (0) characterizes the shape of the figure.
Quantities f̄ and σ 2( f ) can be interpreted as mean

and variance corresponding to a distribution function
Ff (x), defined as

Ff (x) = 1

2π
L({ϕ : f (ϕ) ≤ 0; 0 ≤ ϕ ≤ 2π}), x ≥ 0

where L denotes the Lebesgue measure of R1 which
is the length for a regular set in R1. The distribution
function Ff (x) of a contour function f (x) is a size,
shape and roundness characteristic.

3.2. Line Moments and Invariants

A useful and practical set of shape descriptors is based
on the theory of moments, which for the case of the
figure contour can be introduced as follows [26, 27].
Consider the parametric representation cX (l) of the
contour C of figure X . Line moments along the con-
tour are given by

m(1)
p,q =

∮
(C)

x p
X (l)yq

X (l)δ(l) dl

where δ(l) is a linear density of the contour, which
for simplicity can be taken as 1. The number p + q
is called the order of the moment. Calculation of the
linear moments for discretized curves can be performed
as

m(1)
p,q ≈

N∑
i=1

(xX (li ))
p(yX (li ))

q

where N is the number of available points of the con-
tour C . This formula is different when only an approx-
imation of the contour by a polygon is available. If the
contour is approximated by an n-side polygon with ver-
texes (xi , yi ) where i = 1, 2, . . . n, each line segment

ui can be parameterized by y = ai x + yi − ai xi where
xi ≤ x ≤ xi+1 and ai = (yi+1 − yi )/(xi+1 − xi ) is
the slope of the segment ui . If the segment is vertical,
the alternative parameterization should be used: x = xi

where yi ≤ y ≤ yi+1. Then the following formula can
be used to calculate the linear moments:

m(1)
p,q ≈

n∑
i=1







√
1 + a2

i

q∑
k=0

{
Cq

k ak
i (yi − ai xi )

q−k

× x p+k+1
i+1 − x p+k+1

i

p + k + 1

}

if ui is not vertical

x p
i

yq+1
i+1 − yq+1

i

q + 1
if ui is vertical




where Cq
k are binomial coefficients.

Line moments are not invariant under the main geo-
metrical transformations such as translation, rotation,
scale change and reflection. However central moments
are invariant under translation. To obtain them, the cen-
ter of gravity of the contour C should be calculated
which, actually, can be expressed through the zero- and
first-order line moments:

x̄ = m(1)
1,0

/
m(1)

0,0 and ȳ = m(1)
0,1

/
m(1)

0,0.

Then central moments are just

µ(1)
p,q =

∮
(C)

(xX (l) − x̄)p(yX (l) − ȳ)qδ(l) dl.

Central moments up to the third order are also given
by the following relations:

µ
(1)
0,0 = m(1)

0,0, µ
(1)
1,0 = µ

(1)
0,1 = 0, µ

(1)
2,0 = m(1)

2,0 − m(1)
0,0 x̄2,

µ
(1)
1,1 = m(1)

1,1 − m(1)
0,0 x̄ ȳ, µ

(1)
0,2 = m(1)

0,2 − m(1)
0,0 ȳ2,

µ
(1)
3,0 = m(1)

3,0 − 3m(1)
2,0 x̄ + 2m(1)

0,0 x̄3,

µ
(1)
2,1 = m(1)

2,1 − m(1)
2,0 ȳ − 2m(1)

1,1 x̄ + 2m(1)
0,0 x̄2 ȳ,

µ
(1)
1,2 = m(1)

1,2 − m(1)
0,2 x̄ − 2m(1)

1,1 ȳ + 2m(1)
0,0 x̄ ȳ2 and

µ
(1)
0,3 = m(1)

0,3 − 3m(1)
0,2 ȳ + 2m(1)

0,0 ȳ3.

Scale-invariant line moments can be obtained by
normalizing the contour by its length:

η(1)
p,q = µ(1)

p,q

(
µ

(1)
0,0

)−(p + q + 1)
.
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Under rotation and reflection the moment-generation
function will change. However, via the theory of alge-
braic invariants it is possible to find certain polynomials
of the central line moments that remain unchanged un-
der rotation and reflection. Some moment invariants
are:

(i) for first-order moments: µ
(1)
1,0 = µ

(1)
0,1 = 0 are

always invariant;
(ii) for second-order moments the invariants are:

φ
(1)
1 = µ

(1)
2,0 + µ

(1)
0,2 and

φ
(1)
2 = (

µ
(1)
2,0 − µ

(1)
0,2

)2 + 4
(
µ

(1)
1,1

)2
;

(iii) for third-order moments the invariants are:

φ
(1)
5 = (

µ
(1)
3,0 − 3µ

(1)
1,2

)(
µ

(1)
3,0 + µ

(1)
1,2

)((
µ

(1)
3,0 + µ

(1)
1,2

)2

− 3
(
µ

(1)
2,1 + µ

(1)
0,3

)2) + (
µ

(1)
0,3 − 3µ

(1)
2,1

)
× (

µ
(1)
0,3 + µ

(1)
2,1

)((
µ

(1)
0,3 + µ

(1)
2,1

)2

− 3
(
µ

(1)
1,2 + µ

(1)
3,0

)2)
,

φ
(1)
3 = (

µ
(1)
3,0 − 3µ

(1)
1,2

)2 + (
µ

(1)
0,3 − 3µ

(1)
2,1

)2
,

φ
(1)
4 = (

µ
(1)
3,0 + µ

(1)
1,2

)2 + (
µ

(1)
0,3 + µ

(1)
2,1

)2
and

φ
(1)
6 = (

µ
(1)
2,0 − µ

(1)
0,2

)((
µ

(1)
3,0 + µ

(1)
1,2

)2

− (
µ

(1)
2,1 + µ

(1)
0,3

)2)
+ 4µ

(1)
1,1

(
µ

(1)
0,3 + µ

(1)
1,2

)(
µ

(1)
0,3 + µ

(1)
2,1

)
;

(iv) it has been shown [22] that for N th-order mo-
ments where N ≥ 3, there are N + 1 absolute
invariants, which remain unchanged under both
reflection and rotation. A number of other invari-
ants can be found that remain unchanged under
rotation but change sign under reflection.

The relationship between invariant moments becomes
more complicated for higher-order moments. However,
moment invariants can be expressed more conveniently
in terms of what are called Zernike moments. These
moments are defined as the projections of a function of
two variables on a class of Zernike polynomials.

Being invariant under linear coordinate transforma-
tions, the moment invariants are useful features in pat-
tern recognition. Using N moments, a contour can be
represented as a point in an N -dimensional vector space
and the pattern recognition problem thus is converted
into a standard decision theory problem, for which sev-
eral approaches are available.

Several figure parameters are based on moments.
The figure’s orientation θ is the angle between the ma-
jor axis of the figure and the x axis of the coordinate
system in which the figure is considered:

θ = 1

2
arctan

(
2µ

(1)
1,1

µ
(1)
2,0 − µ

(1)
0,2

)
.

Once θ is known, the bounding rectangle of the figure
can be determined. The bounding rectangle is the small-
est rectangle enclosing the object that is also aligned
with its orientation. Its sides can be calculated as

h = max{xX (l) cos θ + yX (l) sin θ}
− min{xX (l) cos θ + yX (l) sin θ}

w = max{−xX (l) sin θ + yX (l) cos θ}
− min{−xX (l) sin θ + yX (l) cos θ}

where 0 ≤ l ≤ L . The best-fit ellipse of the figure
can be also expressed in terms of the line moments.
The best-fit ellipse is the ellipse whose second-order
moments are equal to the second-order moments of the
figure. Let a and b denote the length of semi-major and
semi-minor axes of the best-fit ellipse. Then

a = 4

√
4

π

8

√√√√(
µ(θ )(1)

2,0

)3

µ(θ )(1)
0,2

and b = 4

√
4

π

8

√√√√(
µ(θ )(1)

0,2

)3

µ(θ )(1)
2,0

where

µ(θ )(1)
0,2 and µ(θ )(1)

2,0

are the second-order line moments of the contour C∗

of figure X∗, which is obtained by rotating figure X by
the angle −θ .

The figure’s eccentricity ε can be measured as:

ε =
√√√√ µ

(1)
0,2 cos2 θ + µ

(1)
2,0 sin2 θ − µ

(1)
1,1 sin 2θ

µ
(1)
0,2 sin2 θ + µ

(1)
2,0 cos2 θ + µ

(1)
1,1 cos 2θ

=
(
µ

(1)
2,0 − µ

(1)
0,2

)2 + 4µ
(1)
1,1

A(X )
.

Finally the figure’s contour spread S can be calculated
in terms of central moments as

S = µ
(1)
0,2 + µ

(1)
2,0.
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One of the advantages of line moments for shape anal-
ysis is that neither the existence of an area nor a closed
contour is required. The line moments can be calculated
for an arbitrary collection of contour fragments.

3.3. Fourier Transform

The Fourier transform is one of the most frequently
used methods in shape analysis [2–4, 11–13, 17, 22,
24, 31, 32, 34, 42, 46, 48, 50]. Consider a periodic
piecewise continuous and differentiable function f (x)
defined on [0, 2π ], which can be one of the con-
tour functions described above. Such function can be
approximated by a Fourier series:

f (x) = a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx)

where the Fourier coefficients are

ak = 1

π

∫ π

−π

f (x) cos kx dx and

bk = 1

π

∫ π

−π

f (x) sin kx dx .

The Fourier series can be also written as

f (x) = a0

2
+

∞∑
k=1

Ak sin(kx + ϕk)

where Ak =
√

a2
k + b2

k and tan ϕk = ak/bk , or in the
complex form as

f (x) =
∞∑

k=−∞
ckeikx

where

ck = 1

2π

×
∫ π

−π

f (x) e−ikx dx =




a0

2
, if k = 0

1

2
(ak − ibk), if k > 0

1

2
(a−k + ib−k), if k < 0

Each term of the Fourier series is called harmonic and
Ak is the harmonic amplitude. The sequence {Ak} is
called the amplitude spectrum.

Some general properties of Fourier series expansion
and Fourier coefficients are given below.

1. Coefficient a0 equals to the mean value of f (x).
2. Fourier coefficients depend in different ways on the

shape of the figure: ak , bk and Ak for small k tend
to describe the global characteristics, while coeffi-
cients for large k describe roughness;

3. Symmetry properties of the figure are reflected by
Fourier coefficients. That is, if the function f (x)
has a smaller period than 2π , namely 2π/ l, where
l ∈ N and l > 1, then if a0 is excluded, only the
coefficients ak and bk with k = lm where m =
1, 2, . . . differ from zero.

4. The operation that assigns to function f (x) its
Fourier coefficients ak and bk is linear. That is,
let f (x) be given in the form f (x) = ∑m

i=1 γi fi (x)
and let a(i)

k and b(i)
k be Fourier coefficients of func-

tions fi (x), then Fourier coefficients of f (x) can be
written as

ak =
m∑

i=1

γi a
(i)
k and bk =

m∑
i=1

γi b
(i)
k .

5. Several geometrical transformations of the contour
of a figure are related to simple operations on the
corresponding Fourier coefficients. If a translation
of the contour has an influence on the contour func-
tion (e.g., the contour complex function) then the
new Fourier coefficients remain the same except for
k = 0. Shrinking or expanding the contour by a fac-
tor α results in scaled Fourier coefficients, c′

k = αck

where ck and c′
k are Fourier coefficients of the origi-

nal and scaled contours, respectively. Changing the
starting point in tracing the contour results in a mod-
ulation of the coefficients, c′

k = cke−ikx0 where x0

is the new starting point. Rotation of the contour by
an angle θ0 causes a constant phase shift of θ0 in
Fourier coefficients, c′

k = ckeiθ0 ; reflection of the
contour about a straight line Ax + By + C = 0
gives the new contour for which

c′
k = c∗

−k

−(A + i B)2

A2 + B2
+ 2δk

−(A + i B)C

A2 + B2
.

6. The Ak (for all k) and |ck | (for all k except k = 0) are
invariant with respect to shift of the starting point
(variable x), rotation and reflection of the contour.
Features ck/|c1|, ak/A0, bk/A0 are invariant to scal-
ing. Finally Ak/A0 and |ck |/|c1| are invariant to all
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Figure 12. (a) normalized amplitude spectrum {An/A0} for the radius-vector function shown in Fig. 4(b); (b) normalized amplitude spectrum
{|cn |/|c1|} (for all n except n = 0) for the contour complex function shown in Fig. 8(a).

above mentioned geometrical transformations. Ex-
amples of {Ak/A0} and {|ck |/|c1|} for different con-
tour functions are given in Fig. 12.

7. As in the theory of stochastic processes, there is a
close connection between contour covariance func-
tion χ f (ϕ) and the Fourier coefficients:

χ f (ϕ) = 1

2

∞∑
k=1

A2
k cos kϕ and

A2
k = 2

π

∫ 2π

0
χ f (ϕ) cos kϕ dϕ.

Often it is enough to consider only the Ak/A0 (k =
1, 2, . . .) coefficients and usually all necessary shape
information is accumulated only in the very few first
coefficients. Some shape parameters can be derived as
shown below.

When the contour of a figure is described by the
radius-vector function rX (ϕ), the following structure,
size and shape terms are often used. The parameters
for global structure and for roughness are

Gn1 =
n1∑

n=1

A2
n and Rn2,n3 =

n3∑
n=n2

A2
n

where n1, n2 and n3 are suitable natural numbers cho-
sen with the figures to be analyzed in mind. The size
term is

R0 =
√√√√a2

0 + 1

2

[(N+1)/2]−1∑
n=1

(
a2

n + b2
n

)

=
√√√√A2

0 + 1

2

[(N+1)/2]−1∑
n=1

A2
n

where R0 is called the equivalent radius and is the
radius of a circle having the same area as that of the
figure. In fact, the area of the figure may be stated in
terms of Fourier coefficients as A(X ) = π R2

0.
The shape terms are

L0 = a0

R0
= A0

R0
, L1(n) = 0, L2(n)

=
(
a2

n + b2
n

)
2R2

0

= A2
n

2R2
0

and

L3(m, n) = 3

4R3
0

(amanan+m − bmbnbn+m

+ ambnbn+m + bmanbn+m)

= 3

4R3
0

(Am An An+m cos(ϕn+m − ϕm − ϕn))

where n = 0, 1, . . . , [(N + 1)/2] − 1 and n + m =
2, 3, . . . , [(N + 1)/2]−1. The shape term L0 is the size
normalized mean radius of the figure radial distribution,
however the interpretation of other shape terms is not
so simple.

The quantity

L2(n)

/
[(N+1)/2]−1∑

j=1

L2( j)

can be considered as a measure of the proportion of the
radial variability of the figure that can be attributed to
the nth harmonic. Partial sum

k∑
j=1

L2( j)

can be used to describe how well the first k harmonics
fit the observed radii. The size and shape terms are
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directly related to the mean µ0, first µ1, second µ2 and
third µ3 moments about the mean of the figure’s radial
distribution:

µ0 = L0 R0 = a0, µ1 = R0

[(N+1)/2]−1∑
n=1

L1(n) = 0,

µ2 = R2
0

[(N+1)/2]−1∑
n=1

L2(n) and

µ3 = R3
0

[(N+1)/2]−1∑
m=1

[(N+1)/2]−1∑
n=1

L3(m, n).

A quantitative index of differences between different
amplitude spectra may be obtained by determining the
average squared deviation of the radius-vector function
from a circle of equal area. This “roughness coefficient”
can be calculated as the square root of one-half the sum
of the squared Fourier coefficients:

R′ =
√√√√1

2

[(N+1)/2]−1∑
n=1

(
a2

n + b2
n

) =
√√√√1

2

[(N+1)/2]−1∑
n=1

A2
n.

Sometimes it is also convenient to consider a modi-
fied roughness coefficients spanning a selected range
of harmonics rather than all of them:

R′
n1,n2 =

√√√√1

2

n2∑
n=n1

A2
n.

When the polar parametric function τ ∗
X (t) = (d∗

X
(t), θ∗

X (t)) is used, the following analysis can be done
[4]. Fourier series expansions are used to represent
d∗

X (t) and θ∗′
X (l). The equivalent radius is then defined

as

R2
0 = 1

2π

∫ 2π

0
(d∗(t))2θ∗′

(t) dt .

The shape terms L0, L2(n) and L3(m, n) for the d∗
X (t)

and θ∗′
X (l) expansions are defined in a similar way as

described for the radius-vector function. For the case
of the contour complex function c∗

X (t) the useful in-
formation is accumulated in |ck |/|c1| [22, 24, 48, 50].
Coefficient c0 usually is not used because it reflects the
contour position.

3.4. Other Series Expansions

There is a number of other series expansions [7, 22]
that can be useful in shape analysis. Before introducing
them, some general ideas of function series expansions
are given. For continuous functions, orthogonal series
expansions provide series coefficients which can be
used for any further processing or analysis of the func-
tions. For a one-dimensional function f (xr ) given at
N equally spaced points xr , a unitary transformation is
written as

un =
N−1∑
r=0

f (xr )a∗
r,n where f (xr ) =

N−1∑
n=0

unar,n.

This can be also written in a matrix form as u =
Af where A−1 = A∗T. This gives f = A∗Tu where
the columns of A∗T, that is, the vectors a∗

r =
{a∗

r,n, 0 ≤ n ≤ N − 1}T are called the basis vectors of
A. The series coefficients un give a representation of
function f (xr ).

The one-dimensional discrete cosine series expan-
sion of function f (xr ) given at N equally spaced points
xr , is defined as

f (xr ) =
N−1∑
n=0

αnun cos
π (2n + 1)r

2N

where αn = √
2/N , α0 = √

1/N and

un = αn

N−1∑
r=0

f (xr ) cos
π (2n + 1)r

2N
.

The one-dimensional discrete sine series expansion
of function f (xr ) given at N equally spaced points
xr (xr = 2πr/N ), is defined as

f (xr ) =
√

2

N + 1

N−1∑
n=0

un sin
π (r + 1)(n + 1)

N + 1

where

un =
√

2

N + 1

N−1∑
r=0

f (xr ) sin
π (r + 1)(n + 1)

N + 1
.

The one-dimensional discrete Walsh-Hadamard series
expansion of function f (xr ) given at N (N = 2n)
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equally spaced points xr , is defined as

f (xr ) = 1√
N

N−1∑
m=0

um(−1)b(r,m)

where

b(r, m) =
n−1∑
i=0

ri mi (ri , mi = 0, 1)

and {ri }, {mi } are the binary representations of r and
m, that is

r = r0 + 2r1 + · · · + 2n−1rn−1 and

m = m0 + 2m1 + · · · + 2n−1mn−1.

The Walsh-Hadamard coefficients are computed as

um = 1√
N

N−1∑
r=0

f (xr )(−1)b(r,m).

The one-dimensional discrete Haar series expansion
of function f (xr ) given at N (N = 2n) equally spaced
points xr , is presented as follows. The Haar functions
h p,q (x) are defined on a continuous interval, x ∈ [0, 1],
as

h0,0(x) = 1√
N

and h p,q (x)

= 1√
N




2p/2,
q − 1

2p
≤ x <

q − 1/2

2p

−2p/2,
q − 1/2

2p
≤ x <

q

2p

0, otherwise

.

The Haar transform is obtained by re-scaling xr in such
a way that x ′

r ∈ [0, 1], where x ′
r = g(xr ), and applying

the matrix form of a unitary transform for f (x ′
r ) and

h p,q (x).
The one-dimensional Gabor series expansion of

function f (x) is defined based on the short-time Fourier
transform:

u�,τ =
∫ ∞

−∞
g∗(t − τ )ut e

−i2πωt dt

= e−i2πωt
∫ ∞

−∞
ĝ∗(ν − � )ûνei2πντ dν

where ûν and ĝ denote the Fourier transforms of ut and
g, respectively, ∗ denotes the complex conjugate and
the window is a Gaussian:

ĝ(µ) = 1

σ
√

2π
e

−µ2

2σ2 .

Some other series expansions of the contour functions
are reported in the literature including KL, Slant, sinu-
soidal, singular value decomposition series expansions
[22], etc. However, their use in shape analysis is limited
and therefore they are not described here.

One common way for analyzing series coefficients
is through the identification and characterization of a
few maximal coefficients. Another possible method of
analysis is based on the idea that the same series co-
efficients for the same contour functions of different
figures mean the same things and, therefore, can be
compared. For the Gabor series expansion two other
methods can be employed. The response of the trans-
form for different parameters ω and τ can be used for
the analysis. Also the projection of the response onto
box axes generates images which can reveal essential
features of the analyzed contour functions.

3.5. Shape Curvature Scale Space Image

A curvature scale space representation is a multi-
scale organization of the invariant geometrical fea-
tures such as the curvature zero-crossing points of
a planar curve [33, 36–38, 43]. To compute it, con-
tour parametric function cX (l) and contour curvature
function κX (l) are used. The evolved version of the
contour C is defined as Cσ = (X (l, σ ), Y (l, σ )) where
X (l, σ ) = x(l) ⊗ g(l, σ ), Y (l, σ ) = y(l) ⊗ g(l, σ ), ⊗
is the convolution operator and g(l, σ ) denotes a one-
dimensional Gaussian kernel of width σ :

g(l, σ ) = 1

σ
√

2π
e

−l2

2σ2 .

The convolution is defined as

F(l, σ ) = f (l) ⊗ g(l, σ ) =
∫ ∞

−∞
f (s)

1

σ
√

2π
e

−(l−s)2

2σ2 ds

≈
3σ∑

s=−3σ

f (l + s)
1

σ
√

2π
e

−(l−s)2

2σ2 .

Then the curvature functionκ(l) for the evolved contour
Cσ is calculated as

κ(l, σ ) = X ′(l, σ )Y ′′(l, σ ) − X ′′(l, σ )Y ′(l, σ )

(X ′2(l, σ ) + Y ′2(l, σ ))3/2
.

The process of generation of the ordered sequence of
evolved contours from a contour C is called the evolu-
tion of the contour C . The function defined implicitly
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Figure 13. (a) contour of a figure; (b) curvature scale space image of the contour.

by κ(l, σ ) = 0 is the curvature scale space image of
C . It can be represented graphically as a binary image
(Fig. 13) in which each row corresponds to a specific
value of σ and each column corresponds to a specific
value of l. Often the normalized arc length parameter
defined on [0, 1] is used instead of l.

The curvature scale space image of a contour is a
convenient shape representation that can be useful in
such applications as shape recognition and matching,
overlapping objects shape extraction, etc. This repre-
sentation is invariant under translation. Size changes of
the figure result in re-sizing the corresponding curva-
ture scale space image in the vertical direction, rotation
itself of the figure changes nothing, but change of the
starting point causes a circular shift of the correspond-
ing curvature scale space image in horizontal direction
whereas reflection of the figure results in reflection of
its curvature scale space image. The function is very
robust to noise, small distortions on the contour do not
change corresponding curvature scale space image too
much.

3.6. Continuous Wavelet Transform

Consider a contour function f (x). Its continuous
wavelet transform with respect to a wavelet mother
function ψ(x) is defined as [1, 23, 35, 39]

U (a, b) =
∫ ∞

−∞
f (x)ψ(a,b)(x) dx

where the wavelets used are in the form of Grossmann-
Morlet wavelets:

ψ(a,b)(x) = 1√
a

ψ

(
x − b

a

)
where a > 0, b ∈ R.

Wavelets are functions ψ : R → R with the property
that {ψ(p1,p2)} forms an orthonormal basis of L2(R).
Wavelet transform of a function f (x) is the set of co-
efficients U (a, b) (Fig. 14(a)). Behavior of the coeffi-
cients under the basic geometric transformations of the
figure can be predicted as:

1. translation: U [ψ ; f (x) + z] = U [ψ ; f (x)] + U [ψ ;
z] = U [ψ ; f (x)]

2. scaling: U [ψ ; c f (x/c)](a, b) = cU [ψ ; f (x)](a/c,
b/c)

3. rotation:U [ψ ; eiθ f (x − x0)](a, b) = eiθU [ψ ; f (x)]
(a, b − x0)

where f (x), in the general case, is a complex function,
U [ψ ; f (x)](a, b) ≡ U (a, b), z ∈ C, c ∈ R+, x0 ∈ R
and θ ∈ [0, 2π ]. If a wavelet with compact support is
used, then local modifications of the shape affect the
wavelet representation only locally.

Different shape properties can be obtained from the
wavelet representation. The basic idea of such shape
analysis is to find the vertical maxima lines of the
wavelet representation. The set of all vertical maxima
lines is called the skeleton of the wavelet represen-
tation (Fig. 14(b)). The scale-space lifetime of each
maxima line or, alternatively, their length can be used
as a measure of their relevance. Most relevant maxima
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Figure 14. Wavelet analysis: (a) continuous wavelet transform (using ‘Sombrero’ wavelets) of the normalized tangent-angle function φ∗
X (t)

shown in Fig. 10(b); (b) skeleton of the wavelet transform.

lines correspond to the dominant points (corners) on
the analyzed contour.

3.7. Radon Transform

The Radon transform of a function f (x, y) defined on
figure X is defined as the integral of f over the line
ρ = x cos(θ ) + y sin(θ ) [28, 29, 49]

R f (ρ, θ )

=
∫∫

f (x, y)δ(ρ − x cos(θ ) − y sin(θ )) dx dy

where δ denotes Dirac δ-function, ρ ∈ R, and
θ ∈ [0, π ). For shape analysis it is of particular interest
to consider the case where

f (x, y) =
{

1, (x, y) ∈ cX (l) = (xX (l), yX (l))

0, otherwise

Figure 15. Radon transform: (a) contour of a figure; (b) radon transform of the contour.

Behavior of the transform under basic geometric trans-
formations of the figure can be predicted as [49]:

1. translation: f (x, y) = g(x − x0, y − y0) ⇒ R f
(ρ, θ ) = Rg(ρ − x0 cos θ − y0 sin θ, θ )

2. scaling: f (x, y) = g(x/a, y/b), a > 0, b > 0 ⇒
R f (ρ, θ ) = ab|γ |−1 Rg(ρ̃,θ̃ ) where ρ̃= ρ

γ
,

θ̃ =
{

arctan(ba−1 tan θ ) if 0 ≤ θ < π/2

arctan(ba−1 tan θ ) + ρ if π/2 ≤ θ < π
,

and γ =
√

(a cos θ )2 + (b sin θ )2

3. rotation: f (r, φ) = g(r, φ − φ0) ⇒ R f (ρ, θ ) =
Rg(ρ, θ − φ) where f and g are expressed in polar
coordinates.

An example of the Radon transform is shown in Fig. 15.
For shape analysis, 2D binary edge and accumulation
maps are of the main interest as they allow one to obtain
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some vital shape properties. Thus, angularity can be
defined as the average of the accumulated values on
the bounding curve of the distribution at and on either
side of a maximum value. For a shape with n protru-
sions, the average value should be taken as the angular-
ity factor. Feret diameter, dθ , for a particular orientation
θ equals the distance between the opposite bounding
curves on a 2D binary edge map at θ . The perimeter of
the convex hull can be defined using the average Feret
diameter, dav , as ph = πdav . Consequently, convex-
ity factor can be derived from the ratio of the convex
hull perimeter and the number of image points which
contribute to the convex hull. The number of lobes on
the convex hull is obtained by counting the number of
maxima on the bounding curve. Size factor and elon-
gation ratio are among the other shape characteristics
that can be calculated from the 2D binary edge map
[29].

4. Concluding Remarks

There exist different classes of contour functions that
are defined on different domains and have different
properties and characteristics. Their commonality how-
ever is that the map X → fX transforms figures into el-
ements of a function space, thus allowing various tools
developed for analyzing the functions to be used for
analyzing the shape. This approach allows one to bring
the problem of shape analysis to the level of abstrac-
tion present in the theory of functions, thus providing a
uniform framework within which other shape functions
can be introduced and analysis methodologies can be
applied.

Various contour functions have certain advantages
and limitations. Thus, the application of the cross-
section function is limited only to symmetric figures,
the radius-vector function requires the figure to be star-
shaped, whereas for the support function convexity is
desirable. The tangent-angle function, contour curva-
ture, and contour complex functions as well as contour
parametric functions can be applied to any contours.
Most of the functions depend on the choice of a ref-
erence point and they behave differently under basic
geometrical transformations such as translation, rota-
tion, size changes, and reflection. Some of them are
or can be defined on [0, 2π ] interval. Therefore, when
choosing a particular contour function for a specific ap-
plication, one should consider all the properties of the
function and the ability to extract any additional useful
parameters.

For the analysis of contour functions, many ideas
of the function analysis as well as the differential and
computational geometry techniques can be applied in
addition to the techniques described above. Also, a con-
tour function can be considered as a realization of a
random process and the theory of stochastic models
and statistical analysis can be used.
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