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Abstract. Electromagnetic position tracking devices are an integral part of 
many modern virtual reality systems.  However, they have an inherent accuracy 
problem due to the dependence on the local electromagnetic field that can be 
easily distorted by a presence of magnetically active elements near the tracker’s 
transmitter or receiver.  Several analytical techniques have been proposed to 
overcome this limitation, however none of them is particularly good with the 
correction of rotation.  In this work, we investigate various rotation correction 
algorithms in an attempt to identify the one that is most accurate and reliable. 

1 Introduction 

A number of technologies can be used to track user’s location and orientation in 
virtual reality applications [1].  To date, electromagnetic position tracking systems [2] 
have been the most widely used technology for various applications ranging from the 
head mounted displays to the immersive projection designs such as ImmersaDesks 
and CAVEs.  Their high popularity is due to a number of factors, namely good 
accuracy within a relatively large tracking volume, nonexistence of the line-of-sight 
problem, light weight of the wearable part, etc.  They are relatively inexpensive, 
readily available, and simple to install and use.  However, they have an inherent 
accuracy problem due to the dependence on the local electromagnetic field that can be 
easily distorted by a presence of electrically or magnetically active elements near the 
tracker’s transmitter or receiver [3].  Also, as working volume increases, their 
accuracy decreases.  Several analytical techniques have been proposed to overcome 
these problems, an overview can be found in [4].  However, they mostly focus on the 
position correction and are not particularly good for the orientation correction.  The 
purpose of this work therefore is to examine the existing rotation correction 
techniques, describe a new rotation correction framework, compare interpolation and 
high order polynomial fit approaches to identify the technique that is most accurate 
and reliable, and to point out some of the issues that have yet to be addressed. 

2 Electromagnetic Tracking Principles 

Flock of Birds (Ascension Technology Corporation) and 3Space Fastrak (Polhemus, 
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Inc.) are among the most frequently used long-range electromagnetic tracking 
systems.  Both devices are based on the design that uses orthogonal electromagnetic 
fields to sense 3D position and orientation [2].  The systems consist from an 
electromagnetic field transmitter coupled with a sensor via electronics linked to a 
computer.  The electromagnetic transmitter contains three orthogonal coils that are 
pulsed in a sequence, the receiver also has three orthogonal coils that measure the 
electromagnetic field produced by the transmitter; the strength of the received signals 
is compared to the strength of the sent pulses to determine the position and compared 
to each other to determine the orientation.  The systems differ in the manner in which 
the fields are generated and detected.  3Space Fastrak is referred to as an AC system 
because its transmitter uses bursts of sinusoidal current and the receiver contains 
passive coils in which currents are induced.  Flock of Birds (FoB) is referred to as a 
DC system because it uses rectangular pulses of direct current and its receiver consists 
of orthogonal fluxgate sensors that measure the field.  FoB makes three additional 
passive measurements per cycle in order to compensate for the constant magnetic 
field of the Earth.  The measurements produced by both systems are rather noisy, 
therefore an additional filtering is implemented. 

Working range of both systems is claimed to be up to 10 feet from the transmitter, 
but their accuracy significantly decreases as the distance between the transmitter and 
receiver increases.  Also, due to the dependence of the measurements on the local 
electromagnetic field, they are sensitive to the ambient electromagnetic environment.  
If there is a metal, or other conductive material, or equipment that produces an 
electromagnetic field near the tracker’s transmitter or receiver, the transmitter signals 
are distorted and the resulting measurements contain both static and dynamic error.  
Static errors as high as several feet have been observed near the maximum range of 
the tracking system.  The manufacturers of the tracking systems suggest that there 
should be no metal components near the transmitter and receiver.  This suggestion, 
however, is often not possible to implement due to the constructional limitations of 
many virtual reality systems and this also does not always cure the problem [5]. 

3 Tracker Calibration Principles 

One way to increase the accuracy of electromagnetic tracking systems is to 
compensate the measurements for the errors through experimentally established 
dependencies between the actual receiver position/orientation and that reported by the 
tracking system at some limited number of points.  Assuming that the transmitter’s 
position is fixed and the surrounding metal does not move, the static error is a 
function of the position of the receiver [2] (more on this follows) and it can be 
corrected as long as the magnetic field does not “fold back” on itself.  Raab et al. [2] 
suggested that corrections of the distorted position and orientation measurements can 
take the form of additive vectors or a sequence of rotations and can be stored either in 
a look-up table or as polynomials in the position parameters.  Much of the work done 
after [2] implements a variation of one of these two methods.  However, the 
techniques found in the literature mostly focus on the position correction which is 
more noticeable in the applications, intuitive to understand and analyze, and less 
difficult to implement.  Up to our knowledge, there are only three attempts reported in 
the literature to correct the rotation error. 
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Livingston et al. [5] recently demonstrated that the orientation error might as well 
be a function of both receiver’s location and orientation.  If this is the case, the 
complexity of the calibration problem rises significantly since not only more 
measurements are needed, but also different mathematics needs to be applied in order 
to design an appropriate calibration mechanism.  We were unable to repeat the 
experiment described in [5] due to the absence of an appropriate measuring tool.  
Instead, we built a receiver holder that allows rotating the receiver around any of its 3 
axes independently while maintaining the same location.  The device is not very 
precise for determining the exact orientation, it only insures the axes of rotation.  
Therefore, the basic test is to rotate the receiver around one of its axes while keeping 
the other 2 constant – if the orientation error does not depend on the orientation, they 
should remain constant.  We also supported this test with a visual inspection using a 
virtual reality application in which a virtual arrow was attached to the receiver so the 
changes in its orientation could be visually observed.  Tests were conducted using 
FoB tracking system.  Changes in both roll and yaw had no or very minor effect on 
the direction of the arrow, much less when moving the receiver away from the 
transmitter.  Changes in pitch near +90º and –90º resulted in the arrow to change its 
orientation by 180º.  Therefore, we concluded that the errors due to the rotation of the 
receiver are minor compared to the errors due to the changes in its location and in 
most cases can be neglected. However, this subject requires further investigation. 

4 Existing Rotation Correction Techniques 

Livingston et al. [5] described a method to correct errors in the rotation using 
averaging over the error quaternions of lookup table points surrounding the point to 
be calibrated.  The lookup table is built by measuring a very large irregularly 
distributed set of samples within 2 meters from the transmitter and re-sampling it into 
a rectilinear grid to form calibration cells.  The measurements are done with the help 
of Faro Metrecom IND-1 (Faro Technologies, Inc.) that provides a precise 
location/rotation of the receiver.  Orientation errors were computed at each irregularly 
distributed point as the quaternion difference between the composed transformation 
from the receiver to itself as measured by Faro arm from one side and FoB from the 
other side and identity.  During re-sampling, the errors were averaged by summing the 
matrices that correspond to the error rotations and computing the singular-value 
decomposition of the summed matrix.  Once the rectilinear correction table is built, 
the error quaternion at the point to be calibrated is obtained by an interpolation of the 
error quaternions from the corners of the cell the point belongs to.  It is done as a 
sequence of spherical linear interpolations, each between two quaternions.  An 
example is supplied where the average orientation error is 3.5º before the correction 
and 2.1º afterwards.  The error was measured as the angle through which the 
measured or corrected local coordinate system must rotate to match the true 
coordinate system.  The authors conclude that such a poor performance is due to the 
dependence of the rotation error on the receiver’s orientation. 

There are some problems with this approach.  The calibration table is not 
composed from the measured data, rather it is interpolated from it.  As a result, the 
lookup table contains errors that were not present in the original data.  Also, it is not 
clear how exactly the error quaternions are interpolated, e.g., in what order spherical 
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linear interpolations are applied, are there any weights associated with each vertex, 
what does “quaternion difference” mean, etc. 

Ellis et al. [6] proposed to measure errors in the orientation by the quaternions that 
would rotate the measured local verticals, approximately surface normals to each 
quadrilateral patch, into true vertical.  The receiver is placed at 8 known locations that 
form a cube that defines a single calibration cell and tracker readings are recorded at 
each location.  The entire tracked volume is covered by the calibration cells of the 
same size.  The orientation errors within each calibration cell are corrected by inverse 
rotations based on the error measurements at adjacent calibration grid nodes.  The 
publication does not contain enough details to understand how exactly this is done.  
No results were published on the correction quality of this technique. 

Kindratenko [4] used another technique based on the application of the high-order 
polynomial fit of the error rotation expressed in the form of Euler angles.  Distorted 
position and rotation measurements are collected at some points of known true 
location and zero orientation of the receiver at each point.  Fitting functions are built 
in the form of the high-order polynomials that fit the errors in Euler angles.  Their 
coefficients are computed by solving the least square fit problem.  Once the 
coefficients are known, the errors in yaw, pitch, and roll at a given tracked location 
are computed via the polynomials and corrected Euler angles are obtained rotating the 
tracked rotation by the fitted error rotation.  Results show that the technique is 
efficient in removing large rotation distortions far from the transmitter and is less 
efficient in removing small distortions near the transmitter; in fact, it may 
occasionally introduce small additional errors near the transmitter. 

One of the disadvantages of this approach is in expressing rotation via Euler angles 
– decomposing it into yaw, pitch, and roll and correcting each of them individually 
may not necessarily be a good idea.  Also, one should be careful specifying the 
rotation axes since wrong rotation order leads to incorrect results.  In addition, yaw, 
pitch, and roll are not necessary well corrected by the polynomials of the same order, 
therefore it is preferable to identify the most appropriate polynomial order for each 
component individually, which was not originally done in [4]. 

5 Proposed Rotation Correction Framework 

We use the notion of quaternions [7] since they eliminate many problems associated 
with Euler angles and rotation matrices.  As receiver moves inside the tracked 
volume, it continuously reports its location ( )zyx ,,  and rotation quaternion ertqqq =  
that contains both the true rotation quaternion tq  (the actual orientation of the 
receiver) and an error quaternion erq  the value of which is presumably a function of 
the receiver’s position.  If erq  is known, the true quaternion is 1−= errt qqq .  Therefore, 
our goal is to develop a technique that approximates the value of erq  at any given 
point ( )zyx ,,  within the tracked volume with a sufficient accuracy based on a limited 
number of points for which we can experimentally measure erq .  One can notice that 
the techniques described in [4-6] also fit into this framework.  Although they use 
different ways to represent the rotation, they all attempt to find erq  and use it to 
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compute the true quaternion tq  from the inverse rotation of q  by erq . 
The following procedure is developed to compute erq .  First, place the receiver at 8 

locations with known coordinates ( )iii zyx ′′′ ,, , 8...,,1=i , that form a cube and with 
known rotations iq′  (Fig. 1a).  The tracking system reports coordinates ( )iii zyx ,,  that 
form a polyhedron and rotations iq  that differ from iq′  by iq ′′  (Fig. 1b). 
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Fig. 1. Mapping between a) receiver placement points and b) tracker reported points. 

Next, calculate error quaternions iq ′′  that rotate iq′  into iq  as iii qqq 1−′=′′ .  Then the 
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so the contribution of the error quaternion at a given vertex i  decreases linearly as the 
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where maxd  is a constant representing the distance starting from which the 
contribution of a given vertex vanishes.  Its value is computed for each polyhedron as 
the half of the largest diagonal of the polyhedron.  Note that if ( ) 0const ≠=df , the 
result is the average of 8 error quaternions. 

The entire tracked volume needs to be covered by the calibration cells in order to 
apply this technique.  The size of the cells should be small enough to insure that the 
distortions of the magnetic field within each cell are linear or very close to linear.  
Also, a fast search algorithm is required to locate the polyhedron to which a point 
with the measured coordinates ( )zyx ,,  belongs. 

5.1 Calibration Table Measurements 

The calibration table is built in the following way.  We place the receiver at regularly 
spaced locations with knows coordinates and with a known constant orientation and 
record both the known true position/rotation and that reported by the tracking system.  
We start from the front-bottom-left corner of the volume to be calibrated and first 
move along Z axis, than along X axis, and finally along Y axis with the same step size 
in all directions.  The last point to be measured in this way is the back-upper-right 
corner of the tacked volume.  The resulting calibration table contains tracker readings 
that are taken on the regular grid in the undistorted coordinates space. 

It is very important to avoid any further magnetic field distortions while measuring 
the exact position of the sensor with the help of an alternative measuring technique.  
To achieve this, a simple sensor holder was designed consisting of a 1x1x0.1 foot 
wooden platform with a housing attached at the top and a set of plastic pipes of the 
length 2, 3, 4, 5, 6, and 7 feet that can be plugged into the housing (Fig. 2).  Moving 
the platform on the regular grid marked on the floor and changing the pipes allows 
placing the sensor at the points whose locations can be precisely determined.  After a 
very careful alignment, the precision of this measuring technique is ±5 mm, ±1º. 

    

Fig. 2.  Assembled sensor holder, wooden platform, and sensor attachment. 

5.2 Polyhedron Search Algorithm 

In order to compute the error quaternion at the point whose tracked coordinates are 
known, we need to identify its 8 surrounding points in the calibration table.  The way 
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the calibration table is built provides us with a straightforward method of splitting the 
tracked volume into the polyhedrons whose corners are the needed 8 surrounding 
points.  A test then is performed to verify if a given tracked point belongs to a given 
polyhedron.  This is done by splitting each polyhedron into 5 tetrahedrons and 
verifying if the point belongs to one of them as described in [8].  If the point is outside 
the calibrated volume, it does not belong to any polyhedrons and therefore the nearest 
polyhedron is used.  In practice, however, it is better to make sure that the calibration 
table is large enough to avoid this situation.  Also, depending on the size of the 
calibration table, this search algorithm may become too slow to accommodate the 
needs of real-time tracking, therefore it is important to optimize it. 

6 Comparison Study 

Two techniques were used in the study: 3rd – 5th order polynomial fit as implemented 
in [4] and the above described interpolation using weighted error quaternions with the 
weights given by the equations 1-3.  The algorithms were tested with two different 
tracking systems: Flock of Birds and Spacepad.  The procedure is to use a calibration 
table to calculate polynomial coefficients for the fit, or as a lookup table for the 
interpolation, and to use a validation table to verify the accuracy of the rotation error 
correction.  The calibration table for the FoB consists of the measurements taken at 
432 locations below the FoB covering space 8x5x7 feet with 1-foot interval in each 
direction.  The validation table consists of the measurements taken at 224 
intermediate to the calibration table locations covering 7x3x6 feet volume.  The 
calibration table for the Spacepad consists of the measurements taken at 140 locations 
directly below the Spacepad covering 6x3x4 feet volume.  The validation table 
consists of the measurements taken at 48 intermediate to the calibration table 
locations covering 4x1x3 feet volume.  The measurements were filtered by the 
utilities implemented in the electronics of each device.  Therefore, it was enough to 
take only one measurement at each location since filtering removed the associated 
jitter very effectively making the errors due to the remaining jitter below the precision 
limits of our alternative measuring technique.  Another issue to consider during the 
data acquisition is the size of the sampling distance.  One-foot sampling interval may 
not be sufficient to accurately model the differences in the magnetic field changes 
from one location to another as linear and it may be necessary to increase the 
sampling density for the measurements taken further from the transmitter.  This issue 
requires more study and is not addressed here. 

Fig. 3 shows angular differences (computed as in [5]) for FoB between the actual 
orientation of the receiver and the orientation reported by the tracking system, 
between the actual orientation and the tracker readings corrected via the 4th order 
polynomial fit, and between the actual orientation and the tracker readings corrected 
via interpolation using the weights from eq. 2.  Each group of consecutive 56 points 
corresponds to the measurements taken at the same distance from the floor.  
Connected dots show the changes in the angular difference as the receiver moves 
along Z axis.  Improvements in the orientation precision are obvious from this plot.  
Similarly, Fig. 4 shows angular differences obtained for the Spacepad.  Cleary, 
angular differences for corrected orientations are much smaller than for non-corrected.  
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Occasionally, however, both polynomial fit and interpolation produce values slightly 
larger than the non-corrected ones. 
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Fig. 3.  Angular differences for non-corrected and corrected orientations, FoB. 
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Fig. 4.  Angular differences for non-corrected and corrected orientations, Spacepad. 

Table 1 contains statistics obtained for both devices calibrated using all 6 
calibration methods as well as for the non-calibrated validation tables.  Fig. 5 shows 
min, average, and max values from the table for both datasets.  In case of the FoB, the 
5th order polynomial fit reduced the average angular difference from 7.6º for non-
calibrated measurements to 1.5º for calibrated measurements.  Interpolation-based 
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calibration using eq. 2 reduced this difference to 1.1º.  As seen from Fig. 5a, both 
techniques performed well, interpolation produced just slightly better results. 

Table 1. Statistics for non-calibrated and calibrated by all 6 techniques datasets. 

FoB Spacepad Calibration method avr, º std, º min, º max, º avr, º std, º min, º max, º 
non-calibrated 7.6 5.3 0.0 24.8 4.6 2.2 0.4 9.2 
3rd order fit 1.6 0.7 0.2 3.7 1.5 0.9 0.2 5.3 
4th order fit 1.4 0.6 0.0 3.6 1.6 1.0 0.4 6.8 
5th order fit 1.5 0.6 0.1 3.5 1. 7 1.1 0.1 6.2 
interpolation, eq. 1 1.1 0.6 0.1 2.8 1.3 0.9 0.3 5.1 
interpolation, eq. 2 1.1 0.6 0.1 2.7 1.3 0.9 0.3 4.6 
interpolation, eq. 3 1.1 0.6 0.1 2.8 1.3 1.0 0.3 5.8 
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Fig. 5. Min/average/max plots for a) Flock of Birds and b) Spacepad. 

Both techniques performed good on the second dataset as well, with the 
interpolation achieving slightly better results (Fig. 5b).  Average angular difference 
for the non-calibrated measurements is 4.6º and is only 1.3º after the interpolation 
using weights from eq. 2.  The maximal values, however, have not decreased as much 
as for the FoB example.  As seen from Fig. 4, angular differences for some points 
located near the edge of the calibration volume remain large even after the calibration.  
We observed that the distortions of the volume tracked with the FoB were more 
homogeneous than in the case of the Spacepad where different regions exhibited 
pronouncedly different shapes of the distortion with large changes inside some of the 
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calibration cells.  This, probably, is the major reason for the poor interpolation of the 
measurements near the edge of the calibrated volume.  Polynomial fit in this case also 
did not work well because the size of the calibration table is not big enough.  In both 
cases, the solution is to obtain a more dense calibration table. 

7 Concluding Remarks 

Results show that both techniques can significantly reduce errors in the tracked 
rotation with the interpolation consistently producing slightly better results than the 
high-order polynomial fit.  A more dense calibration table would help to eliminate the 
problems with the calibration near the edge of the tracked volume.  Since both 
techniques require time-consuming measurements to obtain an adequate calibration 
table, the problem that remains unsolved is how to accelerate this to perform the 
calibration more rapidly.  A software implementation of the techniques developed in 
this study is available at http://www.ncsa.uiuc.edu/VPS/emtc/libtrcalib.htm. 
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