Credential Management in the Grid Security Infrastructure

GlobusWorld Security Workshop January 16, 2003

Jim Basney

jbasney@ncsa.uiuc.edu http://www.ncsa.uiuc.edu/~jbasney/

National Center for Supercomputing Applications

Credential Management

- Enrollment: Initially obtaining credentials
- <u>Retrieval</u>: Getting credentials when and where they're needed
- **<u>Renewal</u>**: Handling credential expiration
- <u>Translation</u>: Using existing credentials to obtain credentials for a new mechanism or realm
- **Delegation**: Granting specific rights to others
- **Control**: Monitoring and auditing credential use
- **<u>Revocation</u>**: Handling credential compromise

We need tools to cope with the complexity of credential management on the Grid.

Grid Credentials

- Identity credentials
 - Different mechanisms (X.509, Kerberos, .NET)
 - Different authorities (CAs, KDCs)
 - Different purposes (authentication, signing, encryption)
 - Different roles (project-based, security levels)
- Authorization credentials
 - X.509 attribute certificates
 - SAML/XACML/XrML assertions
- Trusted credentials
 - CA certificates and policies
 - Other certificates and public keys (SSH, PGP)

Accessing Credentials

- Ubiquitous access to the Grid
 - Initiate secure Grid sessions from desktops, kiosks, PDAs, cell phones, etc.
 - Requires access to needed credentials, including trusted credentials (CA certificates, etc.)
 - Bootstrap from password
- Delegating credentials to transient services
 - May need to retrieve additional credentials and/or renew existing credentials at run-time
 - Need access to trusted credentials and policy information

Traditional PKI Enrollment

- 1. End entity generates public/private key pair & submits certificate request to CA
- 2. CA approves/denies certificate request & signs certificate if request is approved
- 3. End entity retrieves signed certificate from the CA

Traditional PKI Enrollment

- Can be cumbersome for users and CA operators
 - May require a trip to a Registration Authority or some other out-of-band identity verification
 - CA operators must examine each request and sometimes investigate further before deciding to approve or deny
 - Process may take hours or days to complete

End Entity Key Management

- Typical practice in GSI is to store private keys in files encrypted by a passphrase
 - Security depends on well-chosen passphrases and well-secured filesystems
- Users copy private keys to the different systems they use to access the Grid
- Not all Grid users are PKI experts
 - Just want to do their computing securely
 - Can we improve usability and security of end entity key management on the Grid?
- Alternatives: Smart Cards, Online CAs, Online Credential Repositories

Smart Cards

- User-managed, portable credential storage
- Security analogous to car keys or credit cards
- Private keys stay in hardware
- Card standards are mature
- Costs are decreasing but still significant
 - \$20 readers, \$2 cards
 - Government ID card deployments
- Can pre-load credentials on the card before distributing it
- Some support already in GSI libraries

Online CA

- User authenticates to CA to obtain credentials immediately
- Leverage existing authentication mechanisms (password, Kerberos, etc.)
- Identity mapping:
 - Simple transformation (i.e., include Kerberos principle name in X.509 certificate subject) or administratormanaged mapping
- Signs long-term and/or short-term credentials
 - If long-term, then credentials are user-managed
 - If short-term, credentials retrieved on demand, without need for user key management

Online CA Security

- CA machine must be well-secured
- Signing key must be well-protected (i.e., stored in hardware crypto module)
- Key compromise allows attacker to create arbitrary credentials
- CA compromise may allow attacker to manipulate user authentication or identity mapping info
- If compromised, must revoke CA certificate and change CA signing key
- Short-term credentials don't need to be revoked

Online Credential Repository

- Store encrypted credentials and access policy in an online repository
 - Repository may be mechanism-aware or may simply hold opaque credentials
- Authenticate to repository to retrieve opaque or delegated credentials
- Separates credential creation from credential management
- Can be deployed by individuals, small groups, VO managers, or CA operators
- Credentials can be pre-loaded to leverage existing authentication mechanisms

Credential Repository Security

- Credentials individually encrypted with user's passphrase
- Compromise requires offline attack on each credential
- Centralized storage of credentials may violate policies (CA CP/CPS)
- If compromised, credentials in repository must be revoked

Who Holds The Keys?

- Viewpoint #1: End entities should have sole possession of their long-term keys
 - Administrator access to end entity keys voids non-repudiation
- Viewpoint #2: End entities can't be trusted to secure their long-term keys
 - Centralized key distribution enforces password policies and credential lifetime limits
- Will this issue hinder cross-site collaboration?

Credential Renewal

- Long-lived tasks or services need credentials
 - Task lifetime is difficult to predict
- Don't want to delegate long-lived credentials
 - Fear of compromise
- Instead, renew credentials as needed during the task's lifetime
 - Renewal service provides a single point of monitoring and control
 - Renewal policy can be modified at any time
 - For example, disable renewals if compromise is detected or suspected

Credential Renewal

Multiple Credentials

- Will a single identity credential per user suffice?
 - A lot of work is being done to vet and/or crosscertify Grid CAs
 - How is that different from Kerberos cross-realm authentication?
- Alternative: Provide tools to manage multiple credentials
 - Single sign-on unlocks all credentials
 - Grid protocols negotiate for required credentials (WS-SecurityPolicy)
 - Authorization decision between individual and resource provider, rather than between realms

Credential Wallet

- Consolidated view of my credentials
- Credential management interface
 - Add, remove, or modify credentials
 - Associate policies with credentials
 - Create authorization credentials
- One-stop credential access point
 - Single sign-on unlocks credentials for a session
 - Contains pointers to available credential services
- Manage credentials on my behalf
 - Example: renew credentials as needed
- Notify when events occur or action is required

