Deploying the TeraGrid PKI

Grid Forum Korea Winter Workshop December 1, 2003

Jim Basney

Senior Research Scientist National Center for Supercomputing Applications University of Illinois jbasney@ncsa.uiuc.edu

Grid-building Challenges

- Many challenges in deploying Grids
 - software compatibility
 - resource discovery (information services)
 - resource allocation
 - accounting (charging for resource usage)
 - performance optimization
 - monitoring / support / helpdesk

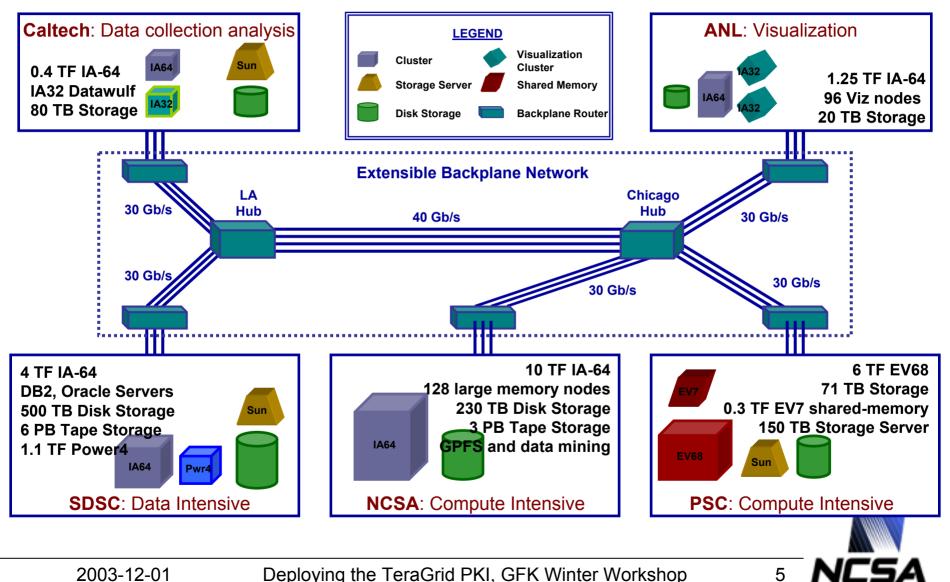
NCSA

2

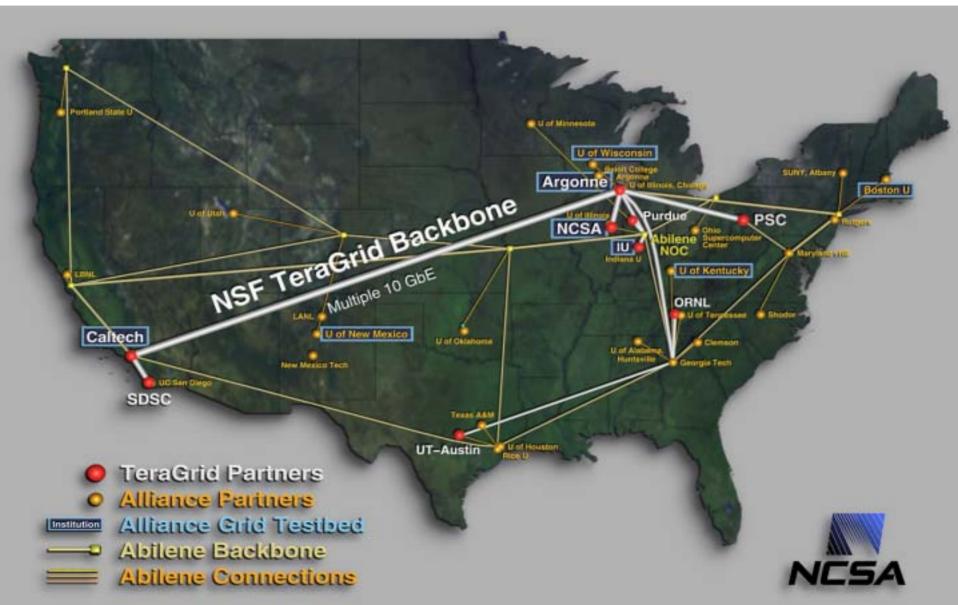
. . .

Managing Trust for Grid Single Sign-on

- A major Grid deployment challenge
- What CAs are trusted?
 - Can a CA gain universal acceptance for single sign-on?
 - What CA practices are acceptable?
 - Use hierarchical CAs or cross-certification?
- How do users obtain and manage credentials?
 - user enrollment, certificate renewal, private key security, …
- How are users authorized to use resources?
 - How are ACLs and authorization services managed?
- Consider the TeraGrid as a Case Study

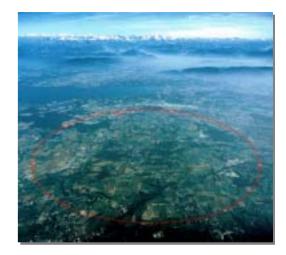


Outline


- TeraGrid Overview
- Globus Security Infrastructure
 - Authentication and Authorization
 - Proxy Credentials
- TeraGrid Online CAs
- TeraGrid Single Sign-on
- Grid-Mapfile Management
- Credential Management

TeraGrid

Additional TeraGrid Sites



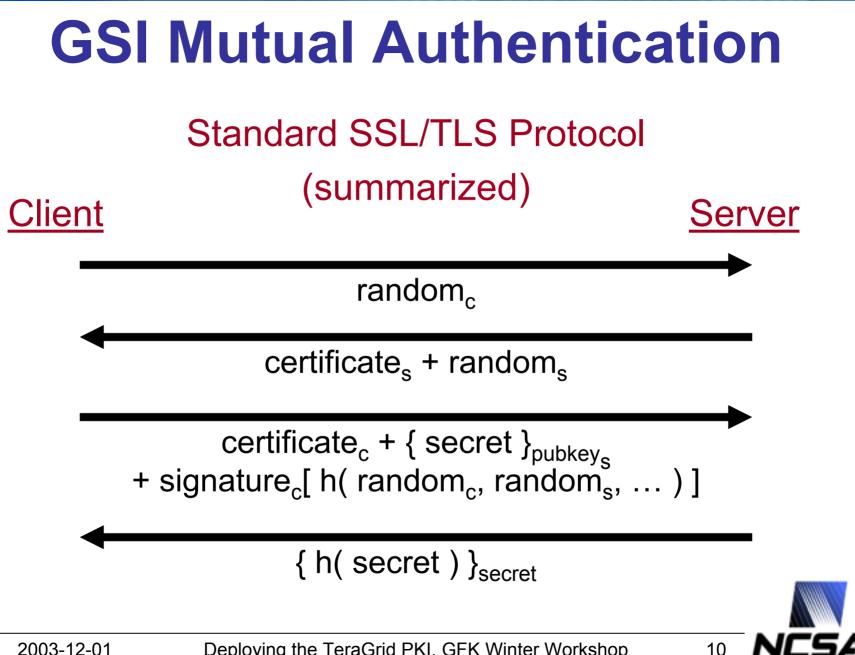
Building Something New

One Organization (merge institutions)	The TeraGrid (A Grid hosting environment)	Very Loose Collaboration (current situation)
 One sysadmin team One management team Distributed machine room, centralized control e.g. Google data centers 	 Single development environment Single software stack to learn Develop here, run there Run here, store there 	 Different MPIs Hit-and-miss grid software Globus version? Condor-G? MPICH-G2? Unique development environment
Not a Grid	Applications are developed for the Grid because the barriers are low and the return large	Not a Grid, but with significant user investment, Grid applications can be developed

TeraGrid and CMS

- Data and software testing challenge
 - test and validate analysis software
 - 100,000,000 events
- Testing approach
 - particle-detector interaction simulator (CMSIM)
 - energy deposition in the detector
 - ORCA (Object Reconstruction for CMS Analysis)
 - reconstruct QCD background sample
 - tracks and reconstructed particles, ready for analysis
- Computing, storage and networking
 - 1.1M SUs on the TeraGrid now
 - 400 processors through April 2005
 - 1M SUs on NCSA Platinum Pentium III cluster
 - 1.5M SUs on NCSA Tungsten Xeon cluster
 - 1 TB for production TeraGrid simulations
 - 400 GB for data collection on IA-32 cluster

http://cmsinfo.cern.ch/


Deploying the TeraGrid PKI, GFK Winter Workshop

Globus Security Infrastructure

- Credentials
 - asymmetric public/private key pair
 - X.509 certificate, signed by Certificate
 Authority, binds distinguished name to key pair
- Authentication (Who are you?)
 - proof of possession of private key
 - verify CA signature on X.509 certificate
- Authorization (What can you do?)
 - based on distinguished name in certificate
 - typically mapped to local account

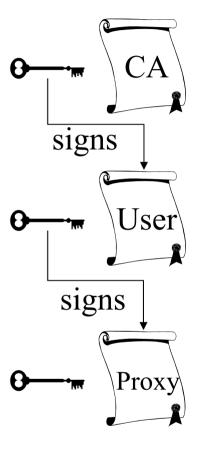
GSI Mutual Authorization

- What is the client authorized to do on the server?
 - typically set by grid-mapfile
- Is the server trusted by the client?
 - i.e., is the server authorized by the client?
 - typically based on authenticated server identity matching the user's request
- Client must have the ability to verify server certificates
 - must trust certificate of the CA that signed the server's certificate
 - must have correct system clock

How to Authorize Clients?

- Access Control Lists
 - ex. Globus grid-mapfile
 - answer "Who can access this resource?"
 - need to maintain many distributed ACLs
- Capabilities
 - ex. SAML, X.509 PMI, VOMS, Akenti, CAS
 - answer "What can this person do?"
 - don't need to distribute ACL updates
 - capability issuer maintains authorization database
- GGF OGSA Authorization WG

What to Authorize?


	<u>Keys</u>	<u>Names</u>
Examples:	SSH, PGP, SPKI	X.509 PKI, GSI
Trusted Third Party?	None	CA signs certificates
Cost of re-keying?	Update ACLs with new public key	Obtain new certificate

- Names can be convenient to work with but...
- Common names are not unique identifiers

Globus Proxy Credentials

- New certificate and key pair
- Proxy certificate signed by user's long-term private key
 - enter passphrase to decrypt private key
- Certificate has short lifetime
- Proxy private key remains unencrypted
- Authenticate with proxy credentials for the remainder of the session

TeraGrid PKI

- A single TeraGrid Certificate Authority is not feasible
 - many sites already have a CA
 - distributed model is preferable for Grids
- TeraGrid PMA evaluates CA trust
 - for interoperability, all TeraGrid sites should accept TeraGrid approved CAs
 - TeraGrid PMA distributes trusted CA certificates to users and administrators

TeraGrid Online CAs

- An Online CA allows users to authenticate and obtain PKI credentials immediately
 - without requiring the user to visit a registration authority, fax a copy of an institutional ID, etc.
 - without requiring the CA operator to manually approve each request
 - leveraging the site's existing relationship with its users
- Online CAs can return long-term or short-term credentials:
 - users contact the online CA infrequently to obtain / renew long-term (1+ year) certificates, or
 - users contact the online CA daily to obtain short-term (12 hour) credentials
 - TeraGrid includes examples of both types of online CAs

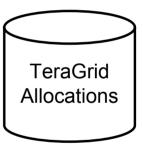
CACL

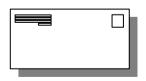
- NCSA and SDSC have online CAs that return long-term credentials
 - OpenSSL-based CACL online CA software developed at SDSC
 - at NCSA, online CA recently replaced offline CA
- Users login to NCSA or SDSC cluster and run a command to obtain 2-4 year credentials
 - credentials stored in ~/.globus as usual
 - requires users to manage their long-term key and certificate files
- For more information:
 - http://www.npaci.edu/CA/
 - http://grid.ncsa.uiuc.edu/ca/

KCA

- PSC runs a Kerberized online CA (KCA)
- Users obtain short-term (12 hour) Kerberos tickets at login
- KCA command allows users to authenticate with Kerberos ticket to obtain Globus credentials
 - KCA credentials have short lifetime equal to Kerberos ticket lifetime
 - stored unencrypted in /tmp to be used like Globus proxy credentials
- No need to issue CRLs as there are no longterm certificates to revoke
- For more information:
 - http://www.citi.umich.edu/projects/kerb_pki/
 - http://www.psc.edu/certificate-authority/

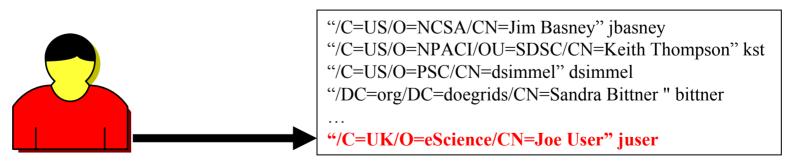
Deploying the TeraGrid PKI, GFK Winter Workshop




TeraGrid Account Creation

- US National Science Foundation committees evaluate research proposals and allocate TeraGrid resources to scientists
- Allocation info is entered into TeraGrid Accounting Database
- Account creation requests sent to sites

 via TeraGrid Account Transaction System
- Scientist receives account information in the mail
 - includes username(s) and initial password(s) for the site(s)


TeraGrid Grid Single Sign-on

- Users can access all TeraGrid resources
 using their Grid proxy credentials
 - using GSISSH, GRAM, and GridFTP
 - no need to remember different usernames and passwords
- For users with no PKI certificate
 - request a certificate from a TeraGrid CA
 - TeraGrid Account Transaction System adds user's distinguished name to grid-mapfiles (planned)
- For users that already have a PKI certificate
 - issuing CA must be trusted by TeraGrid sites
 - gx-map command allows users to add additional distinguished names to grid-mapfiles

GX-Map

- A Globus grid-mapfile management tool
- Allows users to add distinguished names to the grid-mapfile
 - mapped only to that user's account
- Similar to adding SSH Authorized Keys
- For more information:
 - http://www.sdsc.edu/~kst/gx-map

Credential Management

- TeraGrid users can store their credentials in an online MyProxy repository
 - credentials encrypted with the user's passphrase
 - users can retrieve delegated proxy credentials from the online repository when/where needed
- MyProxy provides credential mobility
 - users need not manually copy certificate and key files between machines
 - long-term keys protected on the MyProxy server
- For more information:
 - http://myproxy.ncsa.uiuc.edu/

Credential Renewal

- Unsolved problem for TeraGrid
- Long-lived tasks or services need credentials
 - task lifetime is difficult to predict
- Don't want to delegate long-lived credentials
 - fear of compromise
- Instead, renew credentials as needed during the task's lifetime
 - renewal service provides a single point of monitoring and control
 - renewal policy can be modified at any time
 - for example, disable renewals if compromise is detected or suspected
- Possible solutions using MyProxy
 - EDG Proxy Renewal Service
 - Condor-G with GRAM proxy refresh

Managing Multiple Credentials

- Will a single identity credential per user suffice?
 - Difficult to achieve trust in a single CA across many organizations
 - Advanced services require authorization credentials
- Pieces of a solution
 - Credential negotiation protocols (WS-SecurityPolicy, ...)
 - Online credential services
- Want to retain single sign-on and ease-of-use

Summary

- TeraGrid has deployed a PKI for single sign-on via the Globus Security Infrastructure
 - Online CAs (CACL, KCA)
 - user control of grid-mapfile authorization (gx-map)
 - online credential repository (MyProxy)
- Ongoing work
 - credential renewal
 - managing multiple credentials

Thank you! Any questions?

Jim Basney <jbasney@ncsa.uiuc.edu>

