

NCSA ISL and Others

- Jim Philips and John Stone: Theoretical and Computational Biophysics Group, Beckman Institute, UIUC
- Kenneth Esler: NCSA and UIUC Physics
- Joshi Fullop: NCSA Systems Monitoring
- Jeremy Enos, Volodymyr Kindratenko, Craig Steffen, Guochun Shi, Mike Showerman: NCSA Innovative Systems Laboratory
- Wen-mei Hwu and William Gropp: UIUC ECE Department

Overview

- AC GPU computing cluster
- Power monitoring
 - Search for power monitors
 - Roll our own--version 1: Tweet-A-Watt
 - Roll our own--version 2: Arduino-based power monitor
- Power monitoring on real applications
- EcoG Cluster
- EcoG Top500 and Green500 submissions

AC cluster (Accelerator Cluster)

- Originally "QP" cluster for "Quadro Plex"
- 32 HP XW9400 nodes. Each node:
 - 2 dual-core 2.4 GHz Opteron 2216
 - 8 GB RAM per node
 - NVIDIA Tesla S1070 each:
 - 4 Tesla C1060 GPUs (128 total in cluster)
- Interconnect network is QDR Infiniband
- CUDA 3.1 compiler/build stack
- Job control/scheduler Moab
 - Specific resource management for jobs via Torque
- QP first commissioned November 2007
- AC on-line since December 2008

AC Cluster

AC01-32 nodes

- HP xw9400 workstation
 - 2216 AMD Opteron 2.4 GHz dual socket dual core
 - 8GB DDR2 in ac04-ac32
 - 16GB DDR2 in ac01-03, "bigmem" on qsub line
 - PCI-E 1.0
 - Infiniband QDR
- Tesla S1070 1U GPU Computing Server
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
 - 1 per host

AC cluster used for

- Virtual school for Science and Engineering (attached to the Great Lakes Consortium for Petascale Computing) NVIDIA/CUDA August 2008,2009,2010
- Other classes in 2010:
 - "Intro to CUDA" Volodymyr Kindratenko, Singapore June 13-19
 - Barcelona Spain, Wen-Mei Hwu July 5-9
 - Thomas Scavo July 13-23
 - "Proven Algorithmic Techniques for Many-core Processors"
 Thomas Scavo August 2-6
 - John Stone August 7-8

AC GPU Cluster Power Measurements

State	Host Peak	Tesla Peak	Host	Tesla power
	(Watt)	(Watt)	power factor	factor (pf)
			(pf)	
power off	4	10	.19	.31
start-up	310	187		
pre-GPU use idle	173	178	.98	.96
after NVIDIA driver module	173	178	.98	.96
unload/reload ⁽¹⁾				
after deviceQuery(2) (idle)	173	365	.99	.99
GPU memtest #10 (stress)	269	745	.99	.99
after memtest kill (idle)	172	367	.99	.99
after NVIDIA module	172	367	.99	.99
unload/reload ⁽³⁾ (idle)				
VMD Madd	268	598	.99	.99
NAMD GPU STMV	321	521	.97-1.0	.85-1.0 ⁽⁴⁾
NAMD CPU only ApoA1	322	365	.99	.99
NAMD CPU only STMV	324	365	.99	.99

- 1. Kernel module unload/reload does not increase Tesla power
- 2. Any access to Tesla (e.g., deviceQuery) results in doubling power consumption after the application exits
- 3. Note that second kernel module unload/reload cycle does not return Tesla power to normal, only a complete reboot can
- 4. Power factor stays near one except while load transitions. Range varies with consumption swings

Search for Power Monitors: What questions do we want to answer?

- How much power do jobs use?
- How much do they use for pure CPU jobs vs. GPUaccelerated jobs?
- Do GPUs deliver a hoped-for improvement in power efficiency?

Hardware: Criteria for data-sampling device

- Cheap
- Easy to buy/produce
- Allows access to real data (database or USB, no CD-installed GUIs)
- Monitors 208V 16A power feed
- Scalable solution across machine room (one node can collect one-node's data)

Search for Good (and Cheap) Hardware Power Monitoring

- Laboratory units too expensive
- Commercial Units:
 - 1A granularity?
 - No direct data logging
 - No real-time data logging

Very capable

PS3000 PowerSight Power Analyzer
 \$ 2495.00

Capable; Closer but still too expensive

- ElitePro[™] Recording Poly-Phase Power Meter Standard Version consists of:
- US/No. America 110V 60 Hz Transformer
- 128Kb Capacity
- Serial Port Communications
- Indoor Use with Crocodile Clips
- Communications Package (Software) and Current Transformers sold separately.
- More Information

Price: \$965.00 Part Number: EP

Instrumented PDUs: poor power granularity

- 1A granularity
- 120V circuits

Watts-up integrated power monitor: CLOSE

- Smart Circuit 20 31298 \$194.95
- Outputs data to web page (how to efficiently harvest this data?)

Data Center Power—208 V, 20 or 30A

Power Monitoring Version 1: Tweet-a-Watt Receiver and Transmitter

http://www.ladyada.net/make/tweetawatt/ Kits available from www.adafruit.com

Tweet-a-Watt

- Kill-a-watt power meter
- Xbee wireless transmitter
- power, voltage, shunt sensing tapped from op amp
- Lower transmit rate to smooth power through large capacitor
- Readout software modified from available Python scripts to upload sample answers to local database
- We built 3 transmitter units and one Xbee receiver
- Currently integrated into AC cluster as power monitor

Evaluation of Tweet-a-Watt

- Limited to Kill-a-Watt capability (120V, 15A circuit)
- Low sampling rate (report every 2 seconds, readout every 30 seconds)
- Either TWO XBEE units required or scaling issue
- Fixed but configurable program; one set, difficult to program (low sampling rate means unit is off most of the time)
- Correlated voltage and current (read power factor and true power usage)
- 50-foot plus range (through two interior walls)
- Currently tied to software infrastructure: Application power studies done with Tweet-a-Watt

Power Monitor version 2: One-off function Prototype Power Monitor

- Used chassis from existing (120 V) PDU for interior space
- Connectors, breaker, and wiring to carry 208V 16A power distribution
- Current sense transformers and Arduino microcontroller for current monitoring
- Prototyped (but not deployed) Python script to insert output into power monitor database

Arduino-based Power Monitor

- Based on Arduino Duemilanove
 - Runs at 16 MHz
 - has 6 analog voltage-to-digital converters (sampled explicitly by read() function)
 - Runs microcode when powered on (from non-volatile memory)
- Accumulates sample arrays for N samples per channel per report (N is on subsequent slides)
- Accumulates current measurements, computes RMS values, and outputs results in ASCII on USB connection
- Arduino is powered from the USB connection

analog inputs

MN 220 picking transformer from Manutech

- Manutech.us
- 1000 to 1 voltage transformer; 1 to 1000 current transformer
- Suggested burden resistor: 100 Ohms.
- AC output voltage proportional to AC current input.
- Output at 100 Ohms: 100 mV/Amp.
- Various ranges of output are achievable by using different burden resistors.

Current Sense Transformer

- MN-220 current "transformer" designed for 1 to 20 amp primary
 - 1000-1 step-up current transformer
- Burden resistor sets the sensitivity; sets "volts per count" calibration constant
- Allows current monitoring without Arduino contact with high-voltage wires

AC Current carrying wire

Industrial Design

- 5 separate sense transformers for 4 power legs and opposite leg of input
- Current sense ONLY; Arduino is competely isolated from power conductors. No phase or power factor information, RMS current *only*

Arduino development environment

- C-like language environment
 - #defines for calibration constants
 - Initial setup() function runs once
 - loop() function repeats forever

SPECIAL WARNING: Arduino INTs are
16 bits! Summing the squares of
measured voltages (in the 200 to
400 range) will OVERFLOW the
accumulator INT. (Convert to float b
efore squaring)

```
File Edit Sketch Tools Help
 DO DDDD 3
  work_voltmeter_doublefloat
 #define AMPSPERCTO
                     (14.796)
#define AMPSPERCT1
                     (9.574)
#define AMPSPERCT2
                     (9.574)
 #define AMPSPERCT3
                     (14.796)
#define AMPSPERCT4
                     (48.828)
// correction factors
#define CORRECO
                    (1.0)
#define CORREC1
                    (1.249)
#define CORREC2
                    (1.193)
#define CORREC3
                    (1.043)
#define CORREC4
                    (0.967)
void setup(){
  analogReference(DEFAULT);
  pinMode(0, INPUT);
  Serial.begin(9600);
void loop() {
 float accum0 = 0.0,accum1 = 0.0,accum2 = 0.0,accum3 = 0.0,accum4 = 0.0,accum5 = 0.0;
 float total0=0.0.total4=0.0:
 float rmsCts = 0.0:
 int N=0:
 int relval:
```


Output Format (our implementation

- Every sampling period outputs block of ASCII text to virtual console (accessed under Linux typically at /dev/ttyUSB0)
- No protocol or readers necessary; software can be checked with commands tail or more
- If ANY sample on a channel is within 10% of the hard limit, then the channel is flagged as "overflow" in the output stream

(note the \r \n double-line breaks)

```
File Edit View Terminal
                           Help
(4)[]= 1335.24
analogzero=524.68 514.80
(0)[]= 1366.71
(1)[]= 7.87
(2)[]= 8.34
(3)[]= 13.22
(4)[ ]= 1329.58
analogzero=501.67 507.42
(0)[]= 1318.34
(1)[]= 8.02
(2)[ ] = 8.97
(3)[]= 9.76
(4) [ ]= 1315.29
analogzero=496.03 506.72
(0)[] = 1346.84
(1)[]= 8.46
(2)[]= 6.59
```

Calibration, Uncertainty and Readout Speed

- Arduino only does RMS summing; not synchronized with AC clock. Possible sampling errors from undersampling AC waveform (hopefully eliminated by enough samples)
- Samples-per-report is set high enough to minimize undersampling errors
- Uncertainty measured with idle node (upper uncertainty limit only)

Measurements per report	Time between reports (s)	Unce	ertainty (mA)
250	.28	±7	
125	.2	±8	
60	.15	±35	
		\ /	

Industrial design continued

- Interchangable burden resistors to match pickup transformer output voltage to Arduino voltage sense
- Initially configured with two 600W channels, two 1000W channels, and main leg monitor is about 3300W for 16A at 208V
- Conclusion: no advantage to careful matching of burden resistors.
 Uncertainty of 3300W channel vs. 600W:

250 samples: 6 vs 7mA

125 samples: 8 vs 8

• 60 samples: 37 vs 35

Advantage: eliminates a LOT of wiring from the prototype

Data storage and calibration database

- Prolog scripts identify the (one) power monitored node (via Torque)
- Job history entry tags job to be attached to time window of power monitor data
- The job scripts create an automagic link to graphed output data per-sample and total usage summary

Power monitor data presentation

- http://ac.ncsa.uiuc.edu/docs/power.readme
- submit job with prescribed Torque resource (powermon)
- Run application as usual, follow link(s)

Each monitored job shows up as a link at http://ac.ncsa.uiuc.edu/jobs.php

Power Profiling – Walk through

AC Power Utilization

JSON Data

- Mouse-over value displays
- Under curve totals displayed
- If there is user interest, we may support calls to add custom tags from application

Unique Features of this Hardware+Software Setup

- Hardware solution
 - Cheap
 - Scalable
- Presentation integrated with job software
- Simple to use with jobs.php link
- Not required; can be ignored by other users

Real Application Speed and Efficiency

- Speedup measured in terms of wall clock time for whole application to run
- Power consumption measurements made over at least 20 sample runs
- Removed power measurements from startup and shutdown phases of applications

NOTE: The NVIDIA cards have internal power measuring. We didn't use them because

- That leaves out the power supply of the Tesla
- We got inconsistent node-to-node results
- We wanted to understand the systematics of the data

Current State: Speedup to Efficiency Correlation

- The GPU consumes roughly double the CPU power, so a 3x GPU is require to break even
- Performance-per-watt is asymptotically roughly half speedup factor or less

Real Applications Speedup Summary

NAMD: raw speedup: 6 speedup-per-watt: 2.8

• VMD: raw: 26x XperW: 10.5

• QMCPack: raw: 62 XperW: 23

• MILC: raw: 20 XperW: 8

SAAHPC 2011

- Symposium on Application Accelerators in High Performance Computing 2011
- Covers all accelerators including GPUs, FPGAs, Cell
- Co-hosted by NCSA, University of Illinois and University of Tennessee, Knoxville
- 2011 dates and location not announced (June or July)
- Submissions due in April/May 2011

Current news can be found at: saahpc.org

EcoG: Tesla 2050-based Cluster

- 128 Tesla 2050 GPU cards donated by NVIDIA
- Significant parts of infiniband fabric donated by QLogic
- Ethernet cables, power cables, PDUs, recycled from retired NCSA "Mercury" and "Tungsten" systems
- EcoG cluster sits on food service shelves and occupies
 18 square feet

System Assembled and Installed by Students

- ~13 students from UIUC ECE/CS departments in clusterbuilding independent study
- 2 graduate students from the chemistry department
- Mike Showerman, Jeremy Enos, Luke Scharf, and Craig Steffen from ISL

Sean Treichler from NVIDIA

EcoG Design Goals

- Experiment with low-power, high performance GPUbased architecture
- Maps to GPU math capabilities
- Frequent but not constant node-to-node updates
- Likely target apps:
 - Molecular dynamics
 - Fluid dynamics
 - HPL works passably well
- High-performance GPUs, lower power CPUs
- RAM (which also consumes power) just bigger than GPU
- NFS root file system (no hard drive on nodes)

EcoG Final Configuration

- Tesla 2050 GPUs primary computing element; single modest CPU per node
- Single-socket motherboard
- Each node:
 - Intel® Core i3 2.93 GHz CPU
 - 4 GB RAM main memory
 - 1 two-port QDR infiniband card

HPL Function Division

- Intel CPU:
 - main application loop
 - panel factorization
 - DTRSM update
 - final triangular solve
 - residual check
- · Tesla GPU:
 - Update DGEMM
 - Rowswap scatter/gather

Power Monitoring Setup: Voltage and Current Probes

Re-used rack-mounted PDU

- 2 voltage probes for 208V power legs
- 2 clamp-on current probes for current measurement
- Probes secured INSIDE enclosure

Final Power Monitoring Setup: Enclosed for Convenience and Safety

- L6-30 208V 30A input
- Voltage and current instrumented PDU
- 2 outputs each for 4 cluster nodes
- Powersight voltage/current monitor external

PowerSight power monitor

- Records sampled data to internal memory
- Time-stamped data read out later via serial

Power Data File

- * Batch Log Began
 * 11/02/10 at 14:16:51
- * Data Type : 0x52 phase-phase
- * Data Period : 62500
- * Data Frames : 1545
- * Mon Period : 1
- * FreqMode : 2
- * Date Format: 1
- * Log Type : 1
- * Software Version: 3.3R
- * Firmware Version : 2.a5
- * Hardware Version : 6.00
- * Serial Number : 25663

Power Data File

•	* Start		V12	V23	V31	I 1	12	I3
	In VAt	W1 \	N2	W3	Wt	VA1	VA2	VA3
•	* Date	Time A	Avg	Avg	Avg	Avg	Avg	Avg
	Avg Avg	Avg A	Avg	Avg	Avg	Avg	Avg	Avg
•	11/02/10	14:16:51	208.3	100.7	107.2	5.76	7	
	5.804	0.000		0.00	0	603.8	568.2	0.0
	1172.	0 620.5	584.8	0.0	1204.8	3		
•	11/02/10	14:16:52	208.2	100.9	107.3	5.75	9	
	5.819	0.000		0.00	0	601.0	570.6	0.0
	1171.	2 617.8	587.5	0.0	1204.8	3		
•	11/02/10	14:16:53	208.5	100.8	107.3	5.76	7	
	5.815	0.000		0.00	0	604.2	569.6	0.0
	1173.0	6 621.0	586.4	0.0	1207.2	2		
•	11/02/10	14:16:54	208.1	100.9	107.3	5.70	4	
	5.797	0.000		0.00	0	596.2	568.5	0.0
	1164.	0 611.6	585.3	0.0	1196.8	3		

Overall Green500 Entry Test Period (6 HPL Runs)

- 6 HPL runs to get closest match to top500 run and allow for warmup
- Last (#6) run closest to top500 submission speed

Power Graph for Measured Single HPL Run

- 2 shoulders: front porch for setup, back porch for answer validation
- Features:
 - Negative spikes
 - Power drops slightly over run

Average 8-node Power Draw In 20% Bins

- Spec for green500 is average power over 20% of run or more
- 4 20% bins in run middle: average 8-node power varies from 2289 W to 2189 W
- Power lowering is real physical effect; GPUS start to run out of computations to do

Final Average Power Calculation

- Average power calculated over 10%-90% range
- Calculated to be 2248
 W (8 nodes)
 = 35.97 kW
 for cluster

Power Draw for Voltage and Power Factor

Expanded time range

Input Voltage During HPL Runs

- Voltage drops but remains within spec
- Shown here for validation and as a sanity check
- Remains about 207.5 during HPL run

Power Factor

- Power factor remains below
 1.035 for whole run including idle time
- Efficient power supplies, not overspecified

Current Questions and Next Steps

- What are the downward power spikes?
 - 1 second resolution too coarse to resolve cleanly
 - Need to use .2 second resolution current meter
- What are similar results with 1, 2, 4 nodes?
- How do the high-resolution timing results vary with application phase and input parameters? (Memory saturation tests have smooth graphs.)
- For more info see: http://www.ncsa.illinois.edu/News/Stories/GreenGPU/

Next Steps to Work On:

- High-resolution Application Testing
- Arduino-based power monitor integrated into cluster control
- Instantaneous power available to running application; application control of power monitoring granularity

