

Overview and Power Monitoring of NCSA-UIUC-NVIDIA "EcoG" Computational Cluster

Craig Steffen NCSA Innovative Systems Lab at the SC 2010 Green500 BOF November 18, 2010

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

EcoG Design Goals

- Experiment with low-power, high performance GPUbased architecture
- Maps to GPU math capabilities
- Frequent but not constant node-to-node updates
- Likely target apps:
 - Molecular dynamics
 - Fluid dynamics
 - HPL works passably well
- High-performance GPUs, lower power CPUs
- RAM (which also consumes power) just bigger than GPU
- NFS root file system (no hard drive on nodes)

EcoG Final Configuration

- Tesla 2050 GPUs primary computing element; single modest CPU per node
- Single-socket motherboard
- Each node:
 - Intel® Core i3 2.93 GHz CPU
 - 4 GB RAM main memory
 - 1 two-port QDR infiniband card

EcoG joins "AC" and "Lincoln" GPU-accelerated clusters at NCSA

Will be used soon in scientific development

Donated or Recycled Hardware

- 128 Tesla 2050 GPU cards donated by NVIDIA
- Significant parts of infiniband fabric donated by QLogic
- Ethernet cables, power cables, PDUs, recycled from retired NCSA "Mercury" and "Tungsten" systems
- EcoG cluster sits on food service shelves and occupies 18 square feet

System Assembled and Installed by Students

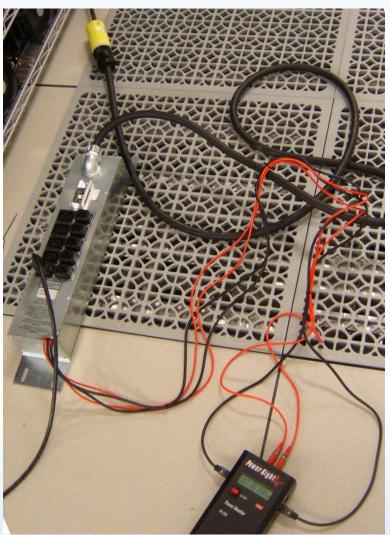
- ~13 students from UIUC ECE/CS departments in clusterbuilding independent study
- 2 graduate students from the chemistry department
- Mike Showerman, Jeremy Enos, Luke Scharf, and Craig Steffen from ISL
- Sean Treichler from NVIDA made the scheduling modifications to HPL

HPL Function Division

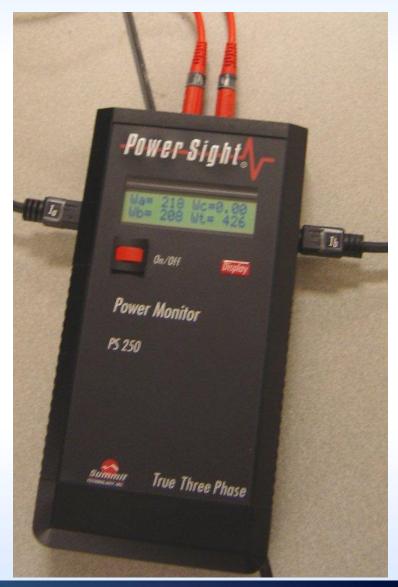
- Intel CPU:
 - main application loop
 - panel factorization
 - DTRSM update
 - final triangular solve
 - residual check
- Tesla GPU:
 - Update DGEMM
 - Rowswap scatter/gather

Power Monitoring Setup: Voltage and Current Probes

Re-used rack-mounted PDU


- 2 voltage probes for 208V power legs
- 2 clamp-on current probes for current measurement
- Probes secured INSIDE enclosure

Final Power Monitoring Setup: Enclosed for Convenience and Safety


- L6-30 208V 30A input
- Voltage and current instrumented PDU
- 2 outputs each for 4 cluster nodes
- Powersight voltage/current monitor external

PowerSight power monitor

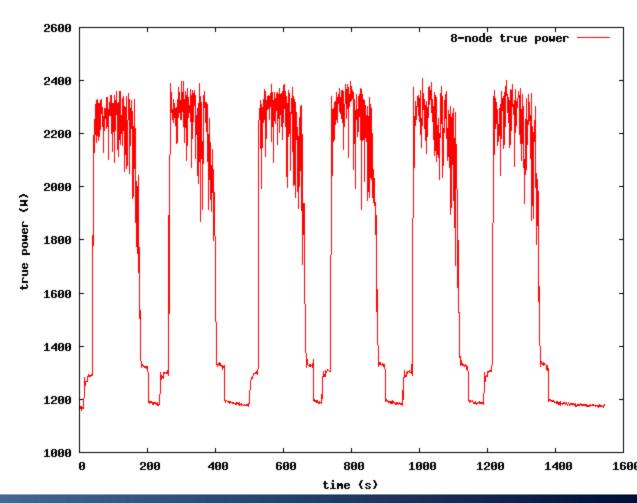
- Records sampled data to internal memory
- Time-stamped data read out later via serial

Power Data File

- *
- * Batch Log Began 11/02/10 at 14:16:51
- •

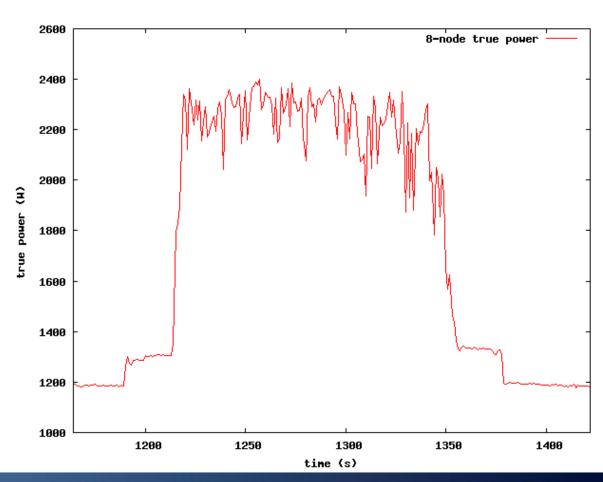
*

- * Data Type : 0x52 phase-phase
- * Data Period : 62500
- * Data Frames : 1545
- * Mon Period : 1
- * FreqMode : 2
- * Date Format : 1
- * Log Type : 1
- * Software Version : 3.3R
- * Firmware Version : 2.a5
- * Hardware Version : 6.00
- * Serial Number : 25663

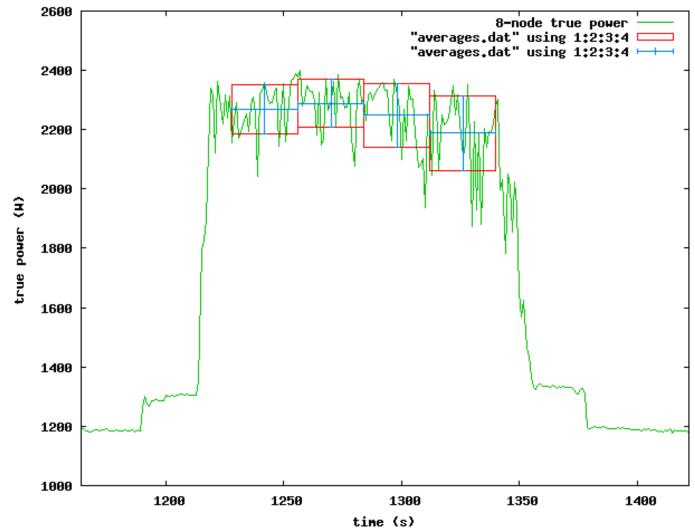

Power Data File

•	* Start	Start	V12	V23	V31	11	12	13
	In VAt	W1	W2	W3	Wt	VA1	VA2	VA3
•	* Date Avg Avg	_	Avg Avg		Avg Avg	Avg Avg	Avg Avg	Avg Avg
•	11/02/10 5.804 1172.	14:16:51 0.000 0 620.5	208.3 584.8	100.7 0.000 0.0	107.2) 1204.8	603.8		0.0
•	11/02/10 5.819 1171.3	14:16:52 0.000 2 617.8	208.2 587.5	100.9 0.000 0.0	107.3) 1204.8	601.0	-	0.0
•	11/02/10 5.815 1173.0	14:16:53 0.000 6 621.0	208.5	100.8 0.000 0.0	107.3) 1207.2	604.2		0.0
•	11/02/10 5.797 1164.	14:16:54 0.000	208.1	100.9 0.000 0.0	107.3	5.70 596.2		0.0

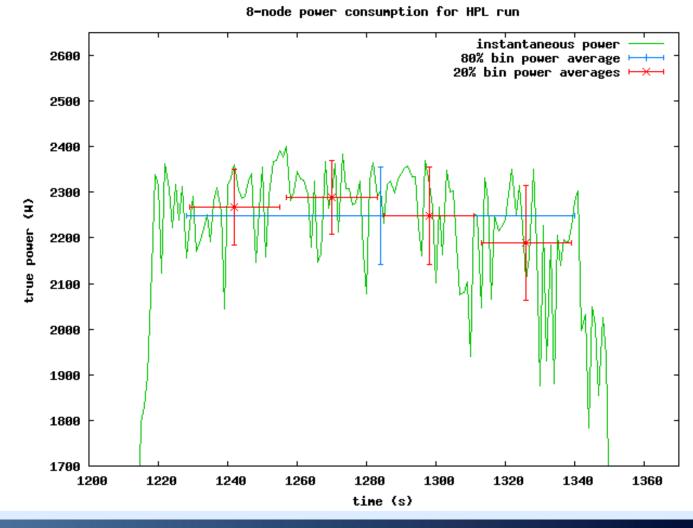
Overall Green500 Entry Test Period (6 HPL Runs)


- 6 HPL runs to get closest match to top500 run and allow for warmup
- Last (#6) run closest to top500 submission speed

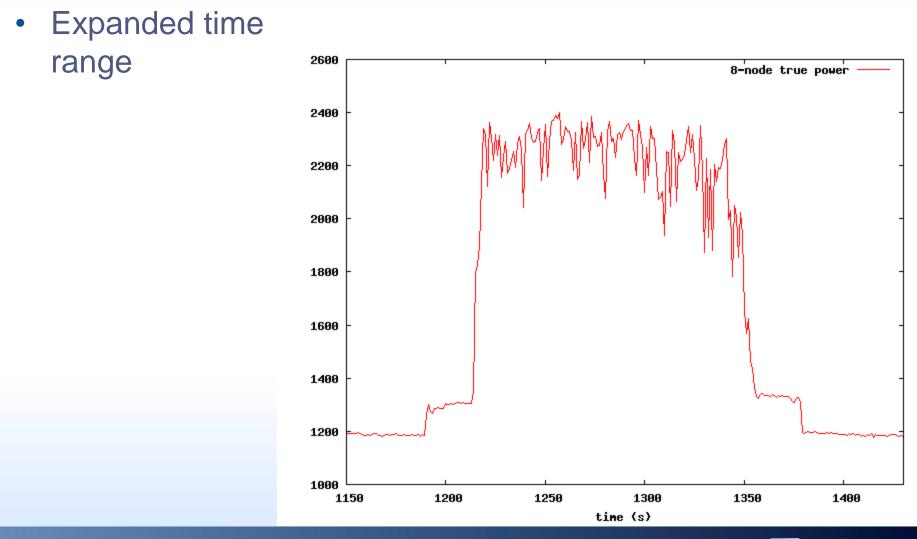
Power Graph for Measured Single HPL Run


- 2 shoulders: front porch for setup, back porch for answer validation
- Features:
 - Negative spikes
 - Power drops slightly over run

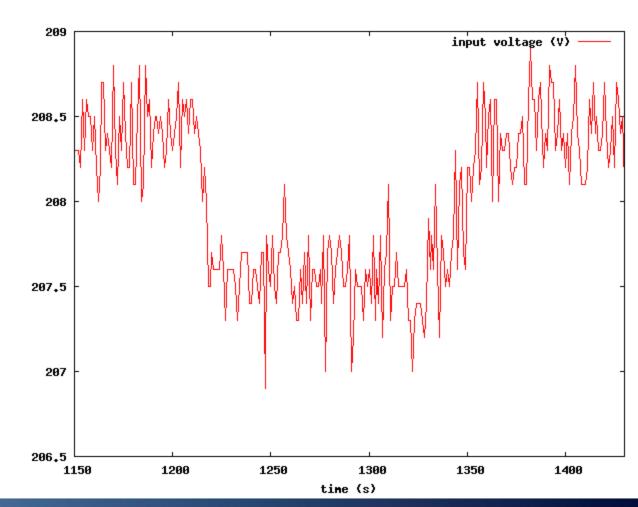
Average 8-node Power Draw In 20% Bins


- Spec for green500 is average power over 20% of run or more
- 4 20% bins in run middle: average 8-node power varies from 2289 W to 2189 W
- Power lowering is real physical effect; GPUS start to run out of computations to do

Final Average Power Calculation

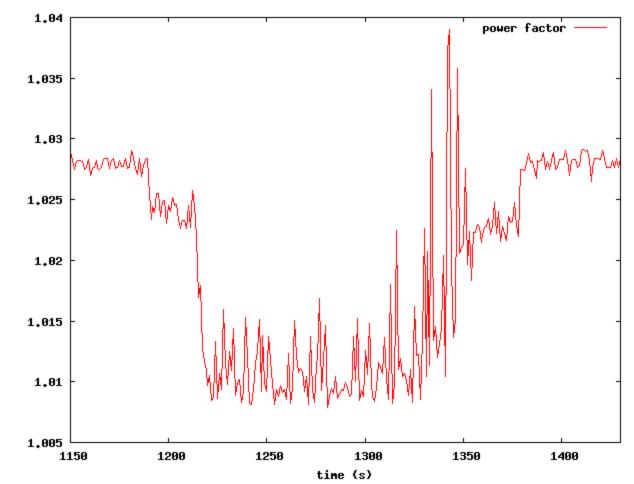

- Average power calculated over 10%-90% range
- Calculated to be 2248W (8 nodes) = 35.97 kW for cluster

Imaginations unbound


Power Draw for Voltage and Power Factor

Imaginations unbound

Input Voltage During HPL Runs


- Voltage drops but remains within spec
- Shown here for validation and as a sanity check
- Remains about 207.5 during HPL run

Power Factor

- Power factor remains below
 1.035 for whole run including idle time
- Efficient power supplies, not overspecified

Current Questions and Next Steps

- What are the downward power spikes?
 - 1 second resolution *too coarse* to resolve cleanly
 - Need to use .2 second resolution current meter
- What are similar results with 1, 2, 4 nodes?
- How do the high-resolution timing results vary with application phase and input parameters? (Memory saturation tests have smooth graphs.)

More Information

• NCSA front page:

http://www.ncsa.illinois.edu

